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Abstracts In this paper, we propose a new strategy for a space robot to control its attitude. A space robot
is an example of a class of non-holonomic systems. a system of which cannot be stabilized into its equilibria
with continuous static state feedbacks even in the case that the system is, in some sense. controllable. Thus,
we cannot design stabilizing controllers for space robots using conventional control theories.

The strategy presented here transforms the non-holonomic system into a time-state control form. and allows
us to make the state of the original system any desired one. In the stabilization, any conventional control

theory can be applied.

For simplicity, a space robot with a two-link manipulator is considered. and a simulated motion of the

controlled system is shown.
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1. INTRODUCTION

A space robot is an example of a class of non-holonomic
systems, a system of which cannot be stabilized into its
equilibria with continuous static state feedbacks even in the
case that the system is, in a nonlinear systems theory, con-
trollable. Thus, we cannot design stabilizing controllers for
space robots using conventional control theories.

On the other hand, for a multi-trailer system which is the
other example of a class of non-holonomic systems. some
control strategies such as the chained form[4, 5] and the
time-state control form[3] were proposed and applied.

In this paper, we will show a new strategy for a space
robot to control its attitude using the time-state comtrol
form.

As for a space robot. the law of conservation of the an-
gular momentum makes the system non-holonomic, while.
when we consider a space robot with a manipulator. using
the properties of the non-holonomic constraints. we can con-
trol not only the positions of the joints but also the attitude
with respect to the inertia coordinates. In these cases. we
do not have to consume the fuel to gain reaction of jet.

In section 2, a class of non-holonomic systems in question
is defined.

In section 3. the time-state control form and a control
strategy are introduced, which allow us to control positions
of systems in a class of non-holonomic systems.

In section 4, a space robot with a two-link manipula-
tor, for simplicity. is considered. At first. we get a state
space representation of the system from the conservation of
the angular momentum. and transform the equation into a
thine-state control form using a coordinate transformation
and an input transformation. The time scale of the form
is a function of the state of the original equation, and the
behavior of a state of the form are stahilizable by conven-
tional control theories along the advance of time. A stabi-
lizing controller is given as a fecdback. when we use exact
linearization method. An attitude control of the original
system accomplishes as the time goes back to zero.

Finally. a simulated motion of the controlled space robot
is shown.
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2. A CLASS OF NON-HOLONOMIC
SYSTEMS

Many non-holonomic systems such as multi-trailer sys-
tems and space robots are modeled in the following n-state
m-input nonlinear system

d
izgl(z)“l + g2(z)uz + -+ gm (), (1)

dt

where z € R" is a state, u = (w1, ++.1m)’ € R™ is an
input with m < n, and {gi(x)} are n-dimensional vector
valued functions with {g:1(0). g2(0).---.gm(0)} linearly in-
dependent. As Brockett[1] showed, the system (1) can not
be stabilized with any continuous static state feedback. i.e.
there do not exist any continuous functions {yi(z)} with re-
spect to z such that a feedback u; = 7i(z)(i = 1,---.m)
will stabilize the system. Thus, the controller design for
non-holonomic systems is quite hard.

We proposed in a previous paper[3] a control strategy
for the system (1) by defining the time-state control form.
This strategy allows us to control a class of non-holonomic
systems using conventional controller design methods.

3. TIME-STATE CONTROL FORM|3]

3.1  Transformation into the Time-State Conirol Form

The time-state control form is the following

L3

ar = f()(E)"‘fl(f)ﬂ'l+"'+fm-l(£)ﬂ'm—-l' (2)
%:— = MET)pm. (3)

This system consists of two state equations.

The former equation (2) is called the state control
part. where £ € R" 7! is a state. 7 is a time scale rather
than the actual time scale ¢. and py.-+, -1 are m — 1
control inputs. We assume £ = 0 is an equilibrium point,
i.e. fo(0) = 0. We also assume that the first order approxi-
mation of this part is controllable. i.e. the system

d 7]
) £ e o1 (0) s (4)
dr 1713 =0

= A£+l)1 [l-1+"'+bm—lllm—l- (5)



is a controllable linear system.

The latter equation (3) is called the time control form.
Its state is 7 € R'. i.e. the time scale of the state control
part (2). It is controlled by single input u,,. In other words.
this part controls the time flow of the state control part.

There is a class of non-holonomic systems (1) each of
which can be transformed into the time-state control form
by a coordinate transformation

( f_ ) =T(z) (T(0)=0), (6)
and an input transformation
i =Vi(z,uy, o yum), t=1,2.---,m. (7)

We will see in section 4 that a state equation of a space
robot can be transformed into a time-state control form.

3.2 A Control Strategy for the Time-State Control Form

In this subsection, we will show a control strategy which
makes the state of the original non-holonomic system (1)
approximately zero. We assume that the original system
(1) is transformed into the time-state control form (2) (3)
by the coordinate transformation (6) and the input trans-
formation (7). Hence, all we have to do is to make £ and 7
approximately zero.

Before showing the control strategy, we will consider two
feedbacks {a;(-)} and {B:(-)} which stabilize the state con-
trol part (2) in the following situations:

e A continuous static state feedback p; = a;(€) (s =
1,-++,m —1) with respect to £ stabilizes the state con-
trol part (2) as the time 7 increases monotonically.

e A continuous static state feedback p; = Gi(€) (i =
1,--+,m ~ 1) with respect to £ stabilizes the state con-
trol part (2) as the time 7 decreases monotonically.

Remarks:

Since the first order approximation (5) of the state control
part is controllable, we can easily design state feedbacks
such as {a;(-)} and {B:(-)} using conventional control the-
ories. For example, at least we can design a linear state
feedback ¢ = F¢ which stabilizes the approximated system
(5), and it is well known that this feedback also stabilizes the
original system (2) in a neighborhood of £ = 0. Of course.
we may use any control theory. such as nonlinear control
theory geometric approach, to design stabilizing controllers
for the state control part. We will use exact linearization to
control a space robot in section 4. O

The following control strategy allows us to make the state
£ and the time scale 7 of the time-state control form approx-
imately zero. Assume that p; = a;(§) and p; = G8i(€) are
the above-mentioned feedbacks.

Control Strategy

Step 1:

Control the time control part (3) using the input p,,, so that
T monotonically increases, while we control the state control
part using the inputs u; = a;(€) (i = 1,---.m — 1). At this
step. £ converges to zero, but r does not.

Step 2:

When £ becomes sufficiently close to zero with step 1, then
we switch the controller. Control the time control part
(3) using the input g, so that 7 monotonically decreases.
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while we control the state control part using the inpnts
pi = Bi(§) (e = 1,---.m — 1). At this step, £ converges
to zero. i.e. £ will not diverge, and 7 decreases. We will
stop 7 decreasing when 7 becomes zero.

Step 3:

If £ and 7 is not sufficiently close to zero, repeat the steps
1 and 2. Otherwise. this is the end of this strategy.

Remarks:

From the property of the coordinate transformation (6).
if the state £ and the time scale 7 of the time-state con-
trol form are all zero. then the state of the original non-
holonomic system (1) is also zero. If the coordinate trans-
formation (G) and its inverse are both continuous mappings
in a neighborhood of the origin. the state of the original
non-holonomic system approaches zero as £ and 7 of the
time-state control form do so. O

4. CONTROL OF A SPACE ROBOT
4.1 A Space Robot with o« Manipulator

Only for simplicity. we will consider the space robot shown
in Fig. 1.

Mass

Fig.1: A Space Robot with a Two-Link Manipulator

The space robot consists of a base, an arm and a moving
weight. We assume that the base and the arm are connected
at the center of gravity of the hbase and an end point of the
arm. We will use the following symbols.

mo. Iy : the mass and the moment of inertia of the hase
my, I1 : the mass and the moment of incrtia of the arm
ma, Iz : the mass and the moment of inertia of the weight

d : the distance hetween the center of gravity of the base
and that of the arm

¢ : the attitude of the base with respect to the inertia
frame

8 : the angle between the base and the arm

£ : the distance between the center of gravity of the base
and that of the weight

As control inputs, let us take the angular velocity 6 and
the weight’s velocity £. This implies that the motion of the
space robot is kinematic.



We would like to control the robot so that § — 84, ¢ — £,
and ¢ — ¢q for any given 84, €4 and 4.

4.2 Modeling of the Space Robot

We assume that the space robot system above has zero total
angular momentum at the initial time, and there exists no
exogenous torque for the system.

From the basic equations of kinematics of space robots|2],
we have the angular momentum conservation equation of
the system

(ch+ecltcall+(cot+erl+cf)d=0, (8)

where
co = I+ D+ T (mo+ms)d, (9)
o = J+ % (mo + ma) d>. (10)
¢ = -2 m;;nz d, (11)
2 = % (mo + ma). (12)

Mi=mo+mi+mz, J:= + L +1,. (13)

Since the inputs of the system are 6 and é, we can read-
ily obtain the following state equation which represents the
behavior of the position error of the space robot

d ] 1 0
= Z):( 0 1t1+<1)uzs (14)
t\ 3 H({) 0

where o
(0,6, == (0,£,4)T — (64, s, $a)" (15)
is a position error, u; := 6 and U 1= ¢ are inputs, and

_cota@+l)+c(l+)’
ch+cr(E+£4)+ ca (€ +£4)2°

H(f) = (16)

Thus, our purpose is to make the state (8,7, ¢)7 zero.

Obviously, the state equation (14) satisfies the conditions
in the section 2, therefore this system can not be stabilized
with any continuous static state feedback. In order to con-
trol this system, we will use the time-state control form.

4.3 Designing a Control System

4.9.1 Transformation into a Time-State Control Form

We will transform the state equation (14) into a time-state
control form using a coordinate transformation and au input
transformation.

We define new state variables £ := (£;.£2)T, 7 as

& = ¢-H(0), (17)
& = . (18)
T o= 8. (19)
and new inputs
1y = u—z, P2 1= uy. (20)
1

From the above transformations. the state equation (14) will
be transformed into the following time-state control form

% - (H(&)O—H(O))+(t1))uh (21)

dr

Et— = j2. (22)

where H(£) = H(Z) for €2 = 7. It is easily seen that £ = 0
is an equilibrium point of the state control part (21). and
the first order approximation of the part is controllable. As
it will be shown in section 4.3.2, the state control part can
be stabilized by exact linearization method.

Someone may wonder if there is any difficulty by using
the input g = uz/uy. When we control the state control
part (21) with the input gy, the time scale 7 must be in-
creasing (or decreasing). i.e. p2 = w1 # 0 frow the time
control part (22). Thus. ;1 will be finite if w2 is finite. This
implies that there is no difficulty by using p1 = uz2 /2.

4.3.2 Ezact Linearization of the State Control Part

Since the state control part (21) is a controllable second
order nonlinear system. it can be exactly linearized[6] unless

_ mj
ed — mog+m;

We define new state variables 5 := (1,12)7 as

m = &, (23)
d
M = EEI
kot kiba+hka8? | ko
- + —. 24
Ry + kb + ke &2 K (24)
and a new input
ki 42k I
(ky +2ka &) o i (25)

(k) + k1 &2 + k2 £7)
where

ko :=co+c1ly+c2ly®,
ky:i=c1+2c2 8y,

ky :=Io + ko

kz =cC2. (26)

From the above transformations, the state control part (21)
will be transformed into the following linear state equation
without approximation

d
Eg=<8(1)>1)+((1))u. (27)

Thus, we can readily design stabilizing controller for (27).
for example, a linear static state feedback

v=Fng (28)

is available. In this case. the stabilizing controller for the
original state control part (21) should be

gy = (ko + k1 &2 + ko 522)2 F _— Ei A
1= - A bgt kg Extka €52 :
(k1 +2k282) Do TRLFR €2tk €27 + Fg_

(29)
From mechanical properties of the space robot. under
many practical cases the coordinate transformation (23)
(24) and the input transformation (25) will be valid globally
so that controllers, such as (29), for the state control part
(21) will he also valid globally.
In the sequel. let us use the controller (29). Hence. all
we have to do is to design the linear static state feedback
gain F in (28).

470



A t=0.00(sec] / t=4.90[sec] 4\ t=10.00{sec] 1=16.00]sec|
N
L} "] ‘
o . ] —_—
/ | \.\! —— -
\/ \ J T)
t=0.60[sec) t=6.75(sec] t=12.00}sec} t=18.00|sec]
[~
»
= X A=
P
A t=3.15[sec] 1=8.30[sec] t=14.00[sec] 1=20.00sec]
#,
\ AN [17
M > -
\\> <A f

Fig.2: A Simulated Motion of the Space Robot

4.4 For the Control Strategy

For the control strategy mentioned in section 3.2, two types
of stabilizing controllers are required: one for the increasing
time scale , another for the decreasing time scale. Since ex-
act linearization of a system is independent of a direction of
the time scale, we need only to design a stabilizing feedback
gain F = Fin. for the system (27). and F = Fy4.. for the

system

dn 0 1 0

EF“(O 0)”‘(1)”* (30)
where 7' 1= —7.

Utilizing the linear static state feedback gains Fj,. and
Fiec with the control strategy, we can control the position
of the robot.

4.5 Simulation

Fig. 2 shows the simulated motion of the space robot, which
is controlled with our strategy from the initial position

(00.20.40)T to the desired one (9,1.[,1,¢,1)T (60.20.d0 +
)T,
6

5. CONCLUSION

We applied the control strategy based on the time-state
control forin to the space robot with a two-link manipulator.
An attitude control of the space robot was accomplished by
a state feedback controller designed with exact lincariza-
tion method. It is expected that using conventional control
theories, we can also design other controllers robust for the
disturbances and noises which do not conflict non-holonomic
constraints of the system.
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