• Title/Summary/Keyword: Hollow Glass Microspheres

Search Result 6, Processing Time 0.02 seconds

Experimental Study on Improving Thermal Shock Resistance of Cement Composite Incorporating Hollow Glass Microspheres (중공 유리 마이크로스피어 혼입 시멘트 복합체의 내열충격성 향상에 대한 실험적 연구)

  • Yomin, Choi;Hyun‐Gyoo, Shin
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.505-510
    • /
    • 2022
  • The thermal shock resistance of cement composites with hollow glass microspheres (HGM) is investigated. Cement composites containing various concentrations of HGM are prepared and their properties studied. The density, thermal conductivity, and coefficient of thermal expansion of the composites decrease with increasing HGM concentration. A thermal shock test is performed by cycling between -60 and 50℃. After the thermal shock test, the compressive strength of the cement composite without HGM decreases by 28.4%, whereas the compressive strength of the cement composite with 30 wt% HGM decreases by 5.7%. This confirms that the thermal shock resistance of cement is improved by the incorporation of HGM. This effect is attributed to the reduction of the thermal conductivity and coefficient of thermal expansion of the cement composite because of the incorporation of HGM, thereby reducing the occurrence of defects due to external temperature changes.

Development of a Lightweight Construction Material Using Hollow Glass Microspheres (중공 유리 마이크로스피어를 활용한 경량 소재 개발)

  • Lee, Nankyoung;Moon, Juhyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.449-455
    • /
    • 2022
  • Concrete is the most widely used construction material. The heavy self-weight of concrete may offer an advantage when developing high compressive strength and good dimensional stability. However, it is limited in the construction of super-long bridges or very high skyscrapers owing to the substantially increased self-weight of the structure. For developing lightweight concrete, various lightweight aggregates have typically been utilized. However, due to the porous characteristics of lightweight aggregates, the strength at the composite level is generally decreased. To overcome this intrinsic limitation, this study aims to develop a construction material that satisfies both lightweight and high strength requirements. The developed cementitious composite was manufactured based on a high volume usage of hollow glass microspheres in a matrix with a low water-to-cement ratio. Regardless of the tested hollow glass microspheres from among four different types, compressive strength outcomes of more than 60 MPa and 80 MPa with a density of 1.7 g/cm3 were experimentally confirmed under ambient and high-temperature curing, respectively.

Effect of the Surfactant Concentration on the Formation of Water Glass-based Porous Hollow Silica Microsphere (Porous한 물유리 기반 실리카 중공 미세구 형성에 대한 계면활성제 농도의 영향)

  • Lee, Jihun;Kim, Younghun;Kim, Taehee;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.79-83
    • /
    • 2021
  • In this study, hollow silica microspheres (HSM) of various sizes formed according to the concentration of surfactants using water glass as a precursor, which is advantageous for commercialization due to its lower unit cost compared to conventional silicon alkoxide (tetraethyl orthosilicate, TEOS) was synthesized. The physical properties of the silica hollow microspheres according to the concentration of surfactant were analyzed using Fourier transform infrared, contact angle measurement, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda analyzers and field emission scanning electron microscopy. When porous water glass-based hollow silica spheres were prepared by adding a surfactant at an appropriate concentration, it was confirmed that excellent hollow silica spheres were formed with a specific surface area of 169 m2/g, an average particle size of 25.3 ㎛, and a standard deviation of 6.25.

Development of Analysis Model for Underwater Acoustic Performance of Multi-Layered Coatings Containing Visco-Elastic Composites (점탄성 복합재가 포함된 다층구조 코팅재의 수중음향성능 해석모델 개발)

  • Kim, Jae Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.25-39
    • /
    • 2018
  • In this paper, an integrated analysis model for evaluating the underwater acoustic performance of the multilayered acoustic coatings containing visco-elastic composite layers with hollow glass microspheres is described. The model uses the effective medium theory considering the acoustic scattering and resonance effects of the inclusions. Also, the model incorporates the compressive deformation mechanism associated with hydrostatic pressure. The technique developed in this work was used as the acoustic layer design and performance analysis tools for the practical hull coatings and acoustic baffles in Korean next generation submarines.

Suppression of Moiré Fringes Using Hollow Glass Microspheres for LED Screen (중공 미소 유리구를 이용한 LED 스크린 모아레 억제)

  • Songeun Hong;Jeongpil Na;Mose Jung;Gieun Kim;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.28-35
    • /
    • 2023
  • Moiré patterns emerge due to the interference between the non-emission area of the LED screen and the grid line in an image sensor of a video recording device when taking a video in the presence of the LED screen. To reduce the moiré intensity, we have fabricated an anti-moiré filter using hollow glass microspheres (HGMs) by slot-die coating. The LED screen has a large non-emission area because of a large pitch (distance between LED chips), causing more severe moiré phenomenon, compared with a display panel having a very narrow black matrix (BM). It is shown that HGMs diffuse light in such a way that the periodicity of the screen is broken and thus the moiré intensity weakens. To quantitatively analyze its moiré suppression capability, we have calculated the spatial frequencies of the moiré fringes using fast Fourier transform. It is addressed that the moiré phenomenon is suppressed and thus the amplitude of each discrete spatial frequency term is reduced as the HGM concentration is increased. Using the filter with the HGM concentration of 9 wt%, the moiré fringes appeared depending sensitively on the distance between the LED screen and the camera are almost completely removed and the visibility of a nature image is enhanced at a sacrifice of luminance.

  • PDF

Effect of Additive Composition on Flexural Strength of Cullet-Loess Tile Bodies (첨가제의 조성이 폐유리-점토 타일의 곡강도에 미치는 영향)

  • Lee, Young-Il;Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.416-422
    • /
    • 2013
  • Cullet-loess tile bodies are successfully fabricated using cullet, loess, hollow microspheres, and sintering additives (borosilicate glass frit, boric acid, or fumed silica) as starting materials. The effects of the additive composition and sintering temperature on the sintered density and flexural strength of the cullet-loess tile bodies are investigated. The sintered density of the cullet-loess tile bodies increases with an increase in the sintering temperature as a result of the enhanced densification of pore walls through the viscous flow of a liquid phase formed from the glass frit and sintering additives. The flexural strength of the cullet-loess tile bodies increases with increases in the sintering temperature and the cullet content in the starting composition. A maximal flexural strength of 40 MPa is obtained in cullet-loess tile bodies sintered with glass frit at $800^{\circ}C$ in air.