• Title/Summary/Keyword: Hoisting planning

Search Result 6, Processing Time 0.02 seconds

A Study on the Hoisting Planning System in Highrise Building Construction (초고층 건축공사의 양중계획 시스템에 관한 연구)

  • Kim, Jung-Jin;Choi, In-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.121-130
    • /
    • 2005
  • A systematic hoisting planning for tower crane is the most important elements in highrise building construction. However without sufficient data, systematic approach, it is not with ease to produce an appropriate planning at the rite. Therefore, this research aims at developing a systematic hoisting planning system in visual graphic with systematic procedure. The result of this research is that developed system on hoisting load calculation, numbers and specification of tower cranes are graphically visualized easily at the site. The study of applying this system to real project proves that it presents a sufficient capability as a useful tool in the hoisting planning of highrise building projects.

A Nonlinear Model-Based Anti-Swing Control for Overhead Cranes with High Hoisting Speeds (권상/권하 속도가 큰 경우 크레인의 비선형 무진동 제어)

  • Lee, Ho-Hun;Jeon, Jong-Hak;Choe, Seung-Gap
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1461-1467
    • /
    • 2001
  • This paper proposes a new approach for the ant-swing control of overhead cranes. The proposed control consists of a model-based anti-swing control scheme and a practical path planning scheme. The anti-swing control scheme is designed based on the Lyapunov stability theorem; the proposed control does not require the usual constraints of small load mass, small load swing, slow hoisting speed, and small hoisting distance, but guarantees asymptotic stability while keeping all internal signals bounded. The path planning scheme is designed based on the concepts of minimum-time control and anti-swing control; the proposed path planning generates near-minimum-time trajectories independently of hoisting speed and distance. The effectiveness of the proposed control is shown by computer simulation.

Agent-based Lift-car Group Operation Optimization Model in High-rise Building Construction

  • Jung, Minhyuk;Park, Moonseo;Lee, Hyun-soo;Hyun, Hosang
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.221-225
    • /
    • 2015
  • To hoist construction workers to their working space is directly related to the productivity of building construction since hoisting tasks are carried out during the working time. In order to reduce hoisting time in the condition that the number of construction lift-cars is limited, various types of the lift-cars group operation plans such as zoning and sky-lobby have been applied. However, previous researches on them cannot be compared in the performance due to their methodological limitation, discrete-event simulation methods, and cannot be find better solution to increase the performance. Therefore, this research proposed the simulation-based optimization model combining the agent-based simulation method to the scatter search optimization methods. Using the proposed model, this paper carried out the comparison analysis on the performance of typical operation plans and also optimize an operation plans by controlling the service range of lift-cars, the size and number of service zones. In this case study, it is verified that better alternatives than typical operation plans can be exists and it is possible to increase the productivity of building construction.

  • PDF

A COMPARISON OF OLD AND NEW OSHA REGULATIONS ON CRANES AND DERRICKS USING COMPREHENSIVE GAP ANALYSIS

  • Chung-Suk Cho;Francis Boafo
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.74-79
    • /
    • 2013
  • Aiming at reducing deaths and injuries involving construction crane operations, OSHA has recently updated its 40-year-old crane safety standards with new rules addressing the use of cranes and derricks in construction. The goal of this change in rule is to deal with the leading causes of fatalities related to crane and derrick operations. Employers in the construction industry are mandated to ensure that employees in the work zone are trained to recognize hazards associated with the use of the equipment and any related duties that they are assigned to perform. However, those responsible at construction sites for the supervision and management of safe crane operations often lack the integrated knowledge of the standards, regulations and best practices for conducting or supervising daily, monthly, or quarterly inspection of cranes. As such, proper planning, management and implementation of crane operations, including inspections are just as paramount to reducing accidents on the construction site. It is important that engineers responsible for the management and planning of crane operations understand the latest OSHA crane and hoisting standards to ensure a safer work environment is maintained. Many on site engineers overseeing crane operations do not have adequate training, experience, and knowledge of the inspection requirements to assess safe crane operation and too often rely on the crane operator's judgement. This paper highlights recent research effort in defining significant changes in new crane and hoisting standards and provides basis for safety construction operations.

  • PDF

Optimization of T/C Lifting Plan using Dependency Structure Matrix (DSM) (DSM을 활용한 타워크레인 양중계획 최적화에 관한 연구)

  • Kim, Seungho;Kim, Sangyong;Jean, Jihoon;An, Sung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.151-159
    • /
    • 2016
  • Tower crane (T/C) is one of the major equipment that is highly demanded in construction projects. Especially, most high-rise building projects require T/C to perform lifting and hoisting activities of materials. Therefore, lifting plan of T/C needs to reduce construction duration and cost. However, most lifting plan of the T/C in construction sites has still performed depending on experience and intuition of the site manager without systematic process of rational work. Dependency structure matrix (DSM) is useful tool in planning the activity sequences and managing information exchanges unlike other existing tools. To improve lifting plan of T/C efficiently, this study presents a framework for the scheduling T/C using DSM through the case study in real world construction site. The results of case study showed that the scheduling T/C using DSM is useful to optimize the T/C lifting plan in terms of easiness, specially in the typical floor cycle lifting planning.

An Analysis Of Optimized Super Tall Building Tower Crane Selection Which Related With Project Construction Period (프로젝트 공사기간과 연계된 극 초고층 타워크레인 최적화 선정에 관한 연구)

  • Cho, Ji-Hun;Cho, Heung-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.131-139
    • /
    • 2009
  • It is critical to select the appropriate type of tower cranes for the construction of super tall buildings. However the selection is often made based on subjective personal experiences due to the lack of historical and analytical data. As a result, planning mistakes and efficiency errors sometimes occur. This research is to develop a system of hoisting analysis for appropriate tower crane selection and to provide a flexible statistical model based on the Burj Dubai project. In addition, this system hassupporting functions that can estimate the target construction period per floor, and a decision-making construction period computation method which is based on the characteristic of the selected tower cranes.