A COMPARISON OF OLD AND NEW OSHA REGULATIONS ON CRANES AND DERRICKS USING COMPREHENSIVE GAP ANALYSIS

Chung-Suk Cho¹ and Francis Boafo²

¹Assistant Professor, Engineering Technology and Construction Management, University of North Carolina at Charlotte, ²Graduate Research Assistant, University of North Carolina at Charlotte Correspond to ccho3@uncc.edu

ABSTRACT: Aiming at reducing deaths and injuries involving construction crane operations, OSHA has recently updated its 40-year-old crane safety standards with new rules addressing the use of cranes and derricks in construction. The goal of this change in rule is to deal with the leading causes of fatalities related to crane and derrick operations. Employers in the construction industry are mandated to ensure that employees in the work zone are trained to recognize hazards associated with the use of the equipment and any related duties that they are assigned to perform. However, those responsible at construction sites for the supervision and management of safe crane operations often lack the integrated knowledge of the standards, regulations and best practices for conducting or supervising daily, monthly, or quarterly inspection of cranes. As such, proper planning, management and implementation of crane operations, including inspections are just as paramount to reducing accidents on the construction site. It is important that engineers responsible for the management and planning of crane operations understand the latest OSHA crane and hoisting standards to ensure a safer work environment is maintained. Many on site engineers overseeing crane operations do not have adequate training, experience, and knowledge of the inspection requirements to assess safe crane operation and too often rely on the crane operator's judgement. This paper highlights recent research effort in defining significant changes in new crane and hoisting standards and provides basis for safety construction operations.

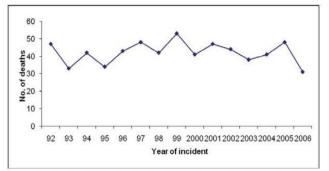
Keywords: crane and derricks; safety; OSHA; gap analysis

1. INTRODUCTION

Cranes, derricks, hoists, and slings are examples of lifting equipment frequently used in construction operations. Available in different types and configurations, cranes are designed to make various lifts and are an absolute necessity in construction projects. However, cranes also share the potential for disaster when operations are not managed safely. Cranes are more commonly the cause of on-the-job accidents than any other heavy equipment as they account for more than 20 percent of all deaths associated with construction jobs (Hodgison, 2010). Moreover, crane accidents are often the most costly of construction accidents when measured in lives as the statistics from the Bureau of Labor Statistics (BLS) show that the number of deaths due to crane accidents average around 78 a year (BLS, 2008).

As such, the need to ensure safety at construction sites while using cranes and derricks have become extremely important due to many accidents and fatalities recorded in the United States and across the world (Peraza, 2009). More specifically, the Center for Construction Research and Training (CCRT) reported that between 1992 and 2006, data from the BLS documented 632 construction worker deaths resulting from crane accidents (Peraza, 2009). Death caused by electrocution from power lines and crane collapse accounted for approximately 158 deaths or 25 percent and 89 fatalities or 14 percent respectively.

Aiming at reducing deaths and injuries involving construction crane operations, OSHA (Occupational Health and Safety Administration) has recently updated its 40-year-old crane safety standards with new rules addressing the use of cranes and derricks in construction. The goal of this change in rule is to deal with the leading causes of fatalities related to crane and derrick operations, including electrocution, crushed-by/struck-by hazards during assembly/disassembly, collapse and overturn, among other types of fatal injuries. According to the OSHA estimation, 22 fatalities and 175 non-fatal injuries per year are expected to be prevented by the new regulation.


Highlights of the significant requirements in this change include: certification or qualification of crane operators, signalers, and riggers; a pre-erection inspection of tower crane parts; assessment of ground conditions; and procedures for working in the vicinity of power lines, among others (OSHA Fact Sheet). In order to clarify the scope of the regulation, OSHA has provided both functional description and a list of examples for the equipment that is covered. Employers in the construction industry are mandated to ensure that employees in the work zone are trained to recognize hazards associated with the use of the equipment and any related duties that they are assigned to perform.

However, those responsible at construction sites for the supervision and management of crane operations lack the integrated knowledge of these modified standards for cranes and consequently lack the abilities to implement safe crane operations. Therefore, proper planning, management and oversight of crane operations are just as paramount to reducing accidents on the construction site. It is important that engineers responsible for the management and planning of crane operations understand the latest OSHA standards to ensure a safer work environment. Many on site engineers overseeing crane operations do not have adequate training, experience, and knowledge to assess the safety of a crane operation and oftentimes rely on the operator's judgment. Based on comprehensive gap analysis, this paper reviews significant changes in standards and regulations that govern crane and derrick operations and suggests best practice in implementation of these revised regulations.

2. BACKGROUND

2.1 Major Causes of Crane Accidents

Some of the major crane fatalities include, collapse due poor ground conditions, overloading, or shifting of the load resulting in crane collapse crushed-by or struck-by hazards during assembly/disassembly, electrocution among others. A review of trade and news media in 2008 by the Center for Construction Research and Training (CCRT) showed 54 construction worker fatalities related to crane accidents representing an approximately 30% increase over the annual fatalities average between 1992 and 2006 (Peraza, 2009). Figure 1 below shows crane related deaths of workers between 1992 and 2006.

Figure 1. Crane-Related Deaths of Workers, 1992-2006. Based on US Bureau of Labor Statistics, Census of Fatal Occupation Injuries Research File. Graphic from the Center for Construction Research and Training (Pareza 2009)

Beaver et al (2006), examined the major causes of crane related fatalities between 1997 and 2003 from OSHA's Integrated Management Information Systems (IMIS) data base. A total of 125 cases involving crane and derricks accidents were identified during the examination. The causes of fatalities during the hoisting activities are summarized in the table below.

Table 1. Causes of Fatalities during the Performance ofHoisting Activities (Federal Register/Vol. 75. 152, 2010)

Toisting Activities (redetal Register vol.	. 75. 152, 2010)
Activities	% of Fatalities
Struck by load (other than failure of	32
boom/cable)	
Electrocution	27
Crushed during assembly/disassembly	21
Failure of boom/cable	12
Crane tip-over	11
Struck by cab/counterweight	3
Falls	2

Suruda et al. (1999) similarly examined major causes of accident between 1984 and 1994 from the OSHA IMIS database involving cranes in the construction industry. During the 11 year period, OSHA recorded 502 deaths in 479 incidents involving cranes in the construction industry. Table 2 below summarizes the causes and related number of incidents.

Table 2. Causes of Crane Incidents (Federal Register/Vol.75, No. 152, 2010)

Incident Caused by	No. of	% of
	Incidents	Incidents
Electrocution	198	39
Crane assembly/disassembly	58	12
Boom buckling/collapse	41	8
Crane upset/overturn	37	7
Rigging failure	36	7
Overloading	22	4
Struck by moving load	22	4
Accidents related to manlifts	21	4
Working within swing radius	17	3
of counterweight		
Two-blocking	11	2
Hoist limitations	7	1
Other causes	32	6

3. PROJECT INITIATION

Many on site engineers overseeing crane operations do not have adequate training, experience and knowledge of the inspection requirements to assess safe crane operation and too often rely on the crane operator's judgment. It is therefore imperative that engineers responsible for the management and planning of crane operations understand the latest OSHA crane and hoisting standards to ensure a safer working environment is maintained.

4. RESEARCH OBJECTIVES

In partnership with the Crane Safety Committee (CSC) of the Construction Institute (CI), the University of North Carolina at Charlotte is carrying out the following:

- Gap analysis to thoroughly analyze the new OSHA crane standards (29 CFR 1926 Subpart CC) in comparison to old OSHA standards (29 CFR 1926.500 Subpart N)
- Update crane Inspection guidelines for OSHA Compliance Officers standard and identify any

significant impact of the modification of the standard have on crane inspections

5. ANALYSIS (in progress)

OSHA Act of 1970 instituted regulation 29 CFR 1926 to reduce injuries and illnesses in American work place. Under this regulation, the subpart N of 29 CFR 1926 was associated with cranes, derricks, hoists, elevators and conveyors. Hence the introduction of 29 CFR 1926.550 was the standard for Cranes and Derricks. In 1988 the 29 CFR 1926.550 was amended to include conditions under which employees on personnel platforms should be hoisted by cranes and derricks.

In 1993 the 29 CFR 1926.550 was amended to require that all employees be kept clear off lifted and suspended loads. In 2010, OSHA released new standard 29 CFR 1926 subpart CC for crane and derricks. Extensive gap analysis was conducted to identify major changes between the two standards (Subparts N & CC) governing the crane and lifting operations. Table 3 below highlights the significant changes as a result of the gap analysis.

Table 3. Gap	Analysis -	Comparing	Old	and	New	Crane
Standards						

	Description	1926.550	1926
		Ν	CC
		(old)	(new)
1	Ground conditions	No	Yes
2	Assembly/Disassembly	No	Yes
3	Power Lines	Limited	Yes
4	Inspections	Yes	Yes
5	Crane Signaling	Limited	Yes
6	Operator Qualifications	No	Yes
7	Wire Rope	Yes	Yes
8	Floating Cranes	Limited	Yes
9	Personnel Platform	Yes	Yes
10	Authority to Stop Operation	No	Yes
11	Training	No	Yes

In Table 3, "No" indicates that the particular topic is not covered in OSHA standard whereas, "Yes" indicates that the topic is significantly covered in OSHA standard. Finally, "Limited" means the topic is partially covered.

Each of the 11 topical areas was thoroughly reviewed to better understand the significant gap between the two standards. The result of this analysis is summarized in subsequent tables below.

Tuble 4. Sup Finarysis Ground Conditions		
New OSHA Standards	Old OSHA Standard	
Ground Conditions 1926.	Not Covered	
1402		
 Ability of the ground to 		
support the Crane		
equipment		
 A/D director or the 		
operator must assess		
ground condition.		
 Controlling Entity or 		

Employer to remedy	
unsuitable ground prior to	
hoisting	

Table 5. Gap Analysis - Assembly/Disassembly

Table 5. Gap Analysis – Assembly/Disassembly				
New OSHA Standards	Old OSHA Standard			
Assembly/Disassembly 1	1926.550(a) employer s			
926.1403	hall comply with the m			
 Employer must comply 	anufacturer's specificati			
manufacturer procedure	ons and limitations			
and prohibition				
 A competent person and 	1926.550(a)(2)			
a qualified person to	 Rated load capacities, 			
supervise	and recommended			
Assembly/disassembly.	operating speeds shall			
 Crew member must 	be visible to the			
inform the operator when	operator at his control.			
going to location where	 Attachments used with 			
operator's view is	cranes shall not exceed			
obstructed	manufacture's			
 During 	recommendation			
assembly/disassembly,				
rated capacity limits for				
loads must not be				
exceeded				
 Employer procedures 				
must be developed by a				
qualified person				

Table 6. Gap Analysis - Power Line Safety

New OSHA Stee Janda Old OSHA Stee Janda				
New OSHA Standards	Old OSHA Standard			
Power line safety	1926.550(a)(15)(vi)			
1926.1407	 Any overhead wire is 			
If any part of the	deemed energized line			
equipment or load could	until electrical utility			
get closer than 20 feet to a	authorities indicate			
power line, the employer	otherwise and it has			
must satisfy any of the	been visibly grounded			
following:	 Equipment clearance 			
 Option (1) Deenergize 	shall be a minimum of			
and ground	4ft for voltage less			
 Option (2) Maintain 20 	than 50 kV., 10ft for			
foot clearance or	voltage over 50 kV up			
• Option (3) follow Table	to 345kV, and 16 ft for			
A clearance	voltage up 750 kV			
 If the operator is unable 				
to see the elevated				
warning line, a dedicated				
spotter must be used				
 A proximity alarm set 				
alert operator of				
encroachment				
 If employer requests 				
voltage information				
power line has two days				
to provide it				
 The employer must train 				
each operator and crew				
member on procedures				
and dangers of power				
lines				

Table 7. Gap Analysis – Inspection

New OSHA Standards	Old OSHA Standard
Inspection 1926.1412	126.550(a)(6)
Equipment that has had	 A thorough, annual
modifications must be	inspection of the
inspected by a qualified	hoisting machinery
person	shall be made by a
Equipment that has had a	competent person
repair or adjustment must	 The employer shall
be inspected by a	maintain a record of
qualified person	the dates and results
 Upon completion of 	of inspection
assembly, the equipment	
must be inspected by a	
qualified person	
 A competent person must 	
begin a visual inspection	
prior to each shift the	
equipment will be used	
Each month the	
equipment is in service it	
must be inspected a	
competent person	
 At least every 12 months 	
the equipment must be	
inspected by a qualified	
person	

Table 8. Gap Analysis – Crane Signaling

meaning the load travel

Table 8. Gap Analysis – Cran	e Signaling	Exceptions: Operator
New OSHA Standards	Old OSHA Standard	qualification or
Crane Signaling	1926.550*a)(4)	certification is not
1926.1404(q)(4)	 Hand signals to crane 	required when
Each outrigger or stabilize	and derrick operators	manufacturer-rated
r must be visible to the o	shall be per ANSI	hoisting/lifting capac
perator or to a signal pers	standard	is 2,000 pounds or le
on during extension and	• An illustration of the	 The employer must
setting	signals shall be posted	provide the qualifica
1926.1441(f)	at the job site	or certification at no
Signal person	1926.550(d)(3) Crane	to operators employe
qualifications. The	with power travel	November 8, 2010
employer must train each	mechanism shall have	Operator Qualification
signal person in the proper	an effective audible	Options
use of signals applicable to	warning signal	 Option (1): Certifica
the use of the equipment	4.8A(17)P17	by an accredited crar
1926.1404(q)(4)	 Outriggers must be 	operator testing
Each outrigger or stabilizer	visible to the operator	organization
must be visible to the	or a signal person	 Option (2): Qualifica
operator or to a signal	during extension or	by an audited employ
person during extension	setting	program
and setting	 4.8C(cab) Functioning 	 Option (3): Qualifica
1926.1441(f)	Horn (warning signal)	by the U.S. military
Signal person	 4.8C(Engine House) 	 Option (4): Licensing
qualifications. The	Hand Signal	a government entity
employer must properly	Illustration	
train each signal person		
1926.1419(a)		
A signal person must be		
provided in each of the		
following situations:		
 The point of operation, 		
• .1 1 1. 1		

or the area near or at load	
placement, is not in full	
view of the operator	
When the equipment is	
traveling in the direction	
of obstructed view	
Due to site specific	
safety concerns, either	
the operator or the	
person handling the load	
determines that it is	
necessary	
1926.1419(b)	
Types of signals. Signals to	
operators must be by hand,	
voice, audible, or new	
signals	

Table 9. Gap Analysis - Operator Qualification

New OSHA Standards	Old OSHA Standard
Operator Qualification	
1926.1427(a)	
The employer must	
ensure that, prior to	
operating any equipment	
the operator is qualified	
or certified to operate the	
equipment	
 Exceptions: Operator 	
qualification or	
certification is not	
required when	
manufacturer-rated	
hoisting/lifting capacity	
is 2,000 pounds or less	
 The employer must 	
provide the qualification	
or certification at no cost	
to operators employed on	
November 8, 2010	
Operator Qualification	
Options	
 Option (1): Certification 	
by an accredited crane	
operator testing	
organization	
 Option (2): Qualification 	
by an audited employer	
program	
• Option (3): Qualification	
by the U.S. military	
• Option (4): Licensing by	
a government entity	

Table 10. Gap Analysis - Wire Rope

New OSHA Standards	Old OSHA Standard
Wire Rope 1926.1413	1926.550(a)(7)
 Wire rope must be 	Wire rope shall be taken
inspected before each	out of service if:
shift by a competent	 Broken
person	 Won or distorted
 Deficiency of wire rope 	 Reduced diameter
must be examined by a	
competent person and	
removed if it's a safety	
hazard	
 Monthly and annual 	
comprehensive	
inspection of wire ropes	
by qualified person	

 Table 11. Gap Analysis – Floating Cranes

New OSHA Standards	Old OSHA Standard
Floating Cranes	1926.550(f)(2)(iii)
1926.1437	Floating cranes and
The requirements for	floating derricks in use
floating cranes include:	shall meet
 Employer must ensure 	manufacturer's
erected hazard safety	requirement for design,
boundaries	construction, installation,
 A competent person 	testing, maintenance,
must determine wind	inspection and operation
conditions	
 Inspections should be 	
conducted during each	
shift, monthly, annually	
and every four years by a	
competent person	
 Equipment to secure 	
floating crane must be in	
good condition	

Table 12. Gap Analysis – Personnel Platform

New OSHA Standards	Old OSHA Standard
Personnel Platform	1926.550(g)
1926.1431	 Hoist of employees on
 Hoist of employees on 	personnel platform is
personnel platform is	prohibited except
prohibited except when	when personnel hoist,
personnel hoist, ladder,	ladder, etc. are more
etc. are more hazardous,	hazardous, or is not
or is not possible.	possible
Platform must meet the	 Hoisting of the
following:	personnel platform
 Uniformly level 	shall be a slow
 Outriggers extended and 	controlled activity
locked	
The total load must not	
exceed 50% of design	
load capacity	
 Equipment must have 	
functional safety devices	
 A trial lift with the 	
unoccupied personnel	
platform required	

 Table 13. Gap Analysis – Authority to Stop Operation

New OSHA Standards	Old OSHA Standard	
Authority to stop	Not covered	
operation 1926.1418		
Whenever there is a concer		
n as to safety, the operator		
must have the authority to		
stop and refuse to handle lo		
ads until a qualified person		
has determined that safety		
has been assured		

Table 14. Gap Analysis - Training

New OSHA Standards	Old OSHA Standard	
Training 1926.1430	Not covered	
The employer must		
provide training as follows:		
 Workers near overhead 		
powerlines		
 Each operator 		
Each assigned signal		
person		
 Each competent person 		
and each qualified person		
Each operator and		
employee authorized to		
start/energize equipment		
 Refresher training 		
 Training at no cost to the 		
employee		

8. CONCLUSIONS

The comprehensive gap analysis conducted to compare old and new OSHA standards on crane and derricks revealed significant change that will impact daily construction operation. As this change in rule is imperative to dealing with the leading causes of fatalities related to crane and derrick operations and to maximizing safe working environment, those responsible at construction sites for the supervision and management of safe crane operations should possess the integrated knowledge of the standards, regulations and best practices for safely conducting or supervising crane and derrick operations. This study and the preliminary findings based on extensive gap analysis will serve as a guideline in understanding the latest OSHA craned and hoisting standards to ensure a safer work environment is maintained.

REFERENCES

[1] Beavers, J., Moore, J., Rinehart, R., and Schriver, W., "Crane-Related Fatalities in the Construction Industry", *Journal of Construction Engineering and Management*, 132(9), 901-910, 2006.

[2] Bernold, Lorenc, S., and Luces, "On-Line Assistance for Crane Operators", *Journal of Computing in Civil Engineering*, 11(4), 248-259, 1997. [3] Parfitt, M., "Cranes, Structures under Construction, and Temporary Facilities: Are We Doing Enough to Ensure They Are Safe?", *Journal of Architectural Engineering*, 15(1), 1-2, 2009.

[4] Peraza, D. B., and Travis, J. A., "Crane Safety—An Industry in Flux", *Forensic Engineering*, 556-566, 2009.

[5] Suruda, A., Liu, D., Egger, M., and Lillquist, D., "Fatal injuries in the United States construction industry involving cranes 1984-1994", *Journal Of Occupational And Environmental Medicine/American College Of Occupational And Environmental Medicine*, 41(12), 1052-1058, 1999.

[6] Federal Register/Vol. 75, No. 152/Monday, August 9, 2010/Rules and Regulations, P 47910

[7]http://aemp.org/education/meetings/11ams_Leadership Perspectives on the OSHA rule-Ryan.pdf, 10/28/2012, 6:05pm