• 제목/요약/키워드: Hohlov operator

검색결과 4건 처리시간 0.019초

CLASS-MAPPING PROPERTIES OF THE HOHLOV OPERATOR

  • Mishra, Akshaya K.;Panigrahi, Trailokya
    • 대한수학회보
    • /
    • 제48권1호
    • /
    • pp.51-65
    • /
    • 2011
  • In the present paper sufficient conditions, in terms of hyper-geometric inequalities, are found so that the Hohlov operator preserves a certain subclass of close-to-convex functions (denoted by $R^{\tau}$ (A, B)) and transforms the classes consisting of k-uniformly convex functions, k-starlike functions and univalent starlike functions into $\cal{R}^{\tau}$ (A, B).

Some Inclusion Properties of New Subclass of Starlike and Convex Functions associated with Hohlov Operator

  • Sokol, Janusz;Murugusundaramoorthy, Gangadharan;Kothandabani, Thilagavathi
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.597-610
    • /
    • 2016
  • For a sufficiently adequate special case of the Dziok-Srivastava linear operator defined by means of the Hadamard product (or convolution) with Srivastava-Wright convolution operator, the authors investigate several mapping properties involving various subclasses of analytic and univalent functions, $G({\lambda},{\alpha})$ and $M({\lambda},{\alpha})$. Furthermore we discuss some inclusion relations for these subclasses to be in the classes of k-uniformly convex and k-starlike functions.

Suffciency Conditions for Hypergeometric Functions to be in a Subclasses of Analytic Functions

  • Aouf, Mohamed Kamal;Mostafa, Adela Osman;Zayed, Hanaa Mousa
    • Kyungpook Mathematical Journal
    • /
    • 제56권1호
    • /
    • pp.235-248
    • /
    • 2016
  • The purpose of this paper is to introduce sufficient conditions for (Gaussian) hypergeometric functions to be in various subclasses of analytic functions. Also, we investigate several mapping properties involving these subclasses.

INCLUSION PROPERTIES OF A CLASS OF FUNCTIONS INVOLVING THE DZIOK-SRIVASTAVA OPERATOR

  • Devi, Satwanti;Srivastava, H.M.;Swaminathan, A.
    • Korean Journal of Mathematics
    • /
    • 제24권2호
    • /
    • pp.139-168
    • /
    • 2016
  • In this work, we rst introduce a class of analytic functions involving the Dziok-Srivastava linear operator that generalizes the class of uniformly starlike functions with respect to symmetric points. We then establish the closure of certain well-known integral transforms under this analytic function class. This behaviour leads to various radius results for these integral transforms. Some of the interesting consequences of these results are outlined. Further, the lower bounds for the ratio between the functions f(z) in the class under discussion, their partial sums $f_m(z)$ and the corresponding derivative functions f'(z) and $f^{\prime}_m(z)$ are determined by using the coecient estimates.