• Title/Summary/Keyword: Histone

Search Result 545, Processing Time 0.023 seconds

Potential Hypersensitivity of Recombinant Mouse IL-2 as a Immunotherapeutic Agent of Cancer in Tumor-bearing BALB/c Mice (항암 면역요법제 인터루킨-2의 면역과민반응 평가연구)

  • Cho, Young-Joo;Eom , Juno H.;Gil , Jung-Hyun;Park , Jae-Hyun;Lee , Jong-Kwon;Oh , Hye-Young;Park , Kui-Lea;Kim , Hyung-Soo
    • YAKHAK HOEJI
    • /
    • v.48 no.6
    • /
    • pp.335-344
    • /
    • 2004
  • Interleukin-2 (IL-2), a glycoprotein mainly secreted by CD4+ T helper Iymphocytes, has been developed to use recombinant cytokine to augment the immune response against cancer since IL-2 not only stimulates T Iymphocytes but also enhances natural killer (NK) cell activity. In order to evaluate the immunological safety of recombinant mouse IL-2 (rmIL-2) in cancer therapy, renal cell carcinoma was established in the flank by s.c. injection of renca cell line. Tumor-bearing BALB/c mice were treated with I.p. injections with $2{\times}10^5$ Lu rmIL-2. Even though the tumor size was diminished, there were not significant recovery of body and relative lymphoid organ weights including thymic atrophy in rmIL-2 immunotherapy. Distribution ratios of T cell subsets in thymus were analysed using flow cytometry. Without regard to dosage of rmIL-2, the ratio of CD3+CD4-CD8- T cells was increased in accordance with survival of solid tumor but that of CD4+CD8+ T cells was decreased dramatically. Emergence of autoantibodies (ANA, anti-dsDNA, and anti-histone) in blood was measured after rmIL-2 treatment. The results showed that the levels of ANA and anti-dsDNA did not significantly changed, but the level of anti-histone was increased significantly owing to rmIL-2 therapy. These results indicate rmIL-2 immunotherapy is to induce the autoimmune potential, and the anti-histone measurement as a biomarker of autoimmunity is useful in cancer immunotherapy.

A Novel Suberoylanilide Hydroxamic Acid Histone Deacetylase Inhibitor Derivative, N25, Exhibiting Improved Antitumor Activity in both Human U251 and H460 Cells

  • Zhang, Song;Huang, Wei-Bin;Wu, Li;Wang, Lai-You;Ye, Lian-Bao;Feng, Bing-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4331-4338
    • /
    • 2014
  • $N^1$-(2, 5-dimethoxyphenyl)-$N^8$-hydroxyoctanediamide (N25) is a novel SAHA cap derivative of HDACi, with a patent (No. CN 103159646). This invention is a hydroxamic acid compound with a structural formula of $RNHCO(CH_2)6CONHOH$ (wherein R=2, 5dimethoxyaniline), a pharmaceutically acceptable salt which is soluble. In the present study, we investigated the effects of N25 with regard to drug distribution and molecular docking, and anti-proliferation, apoptosis, cell cycling, and $LD_{50}$. First, we designed a molecular approach for modeling selected SAHA derivatives based on available structural information regarding human HDAC8 in complex with SAHA (PDB code 1T69). N25 was found to be stabilized by direct interaction with the HDAC8. Anti-proliferative activity was observed in human glioma U251, U87, T98G cells and human lung cancer H460, A549, H1299 cells at moderate concentrations ($0.5-30{\mu}M$). Compared with SAHA, N25 displayed an increased antitumor activity in U251 and H460 cells. We further analyzed cell death mechanisms activated by N25 in U251 and H460 cells. N25 significantly increased acetylation of Histone 3 and inhibited HDAC4. On RT-PCR analysis, N25 increased the mRNA levels of p21, however, decreased the levels of p53. These resulted in promotion of apoptosis, inducing G0/G1 arrest in U251 cells and G2/M arrest in H460 cells in a time-dependent and dose-dependent manner. In addition, N25 was able to distribute to brain tissue through the blood-brain barrier of mice ($LD_{50}$: 240.840mg/kg). In conclusion, our findings demonstrate that N25 will provide an invaluable tool to investigate the molecular mechanism with potential chemotherapeutic value in several malignancies, especially human glioma.

Effects of Paf1 complex components on H3K4 methylation in budding yeast (출아효모에서 Paf1 복합체의 구성원들이 H3의 네번째 라이신의 메틸화에 미치는 영향)

  • Oh, Jun-Soo;Lee, Jung-Shin
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.487-494
    • /
    • 2016
  • In Saccharomyces cerevisiae, Paf1 complex consists of five proteins, and they are structurally and functionally well conserved in yeast, fruit fly, plants, and human. With binding to RNA polymerase II from transcription start site to termination site, Paf1 complex functions as a platform for recruiting many types of transcription factors to RNA polymerase II. Paf1 complex contributes to H2B ubiquitination and indirectly influences on H3K4 di- and tri-methylation by histone crosstalk. But the individual effects of five components in Paf1 complex on these two histone modifications including H2B ubiquitination and H3K4 methylation largely remained to be identified. In this study, we constructed the single-gene knockout mutants of each Paf1 complex component and observed H3K4 mono-, di-, and trimethylation as well as H2B ubiquitination in these mutants. Interestingly, in each ${\Delta}paf1$, ${\Delta}rtf1$, and ${\Delta}ctr9$ strain, we observed the dramatic defect in H3K4 monomethylation, which is independent of H2B ubiquitination, as well as H3K4 di- and trimethylation. However, the protein level of Set1, which is methyltransferase for H3K4, was not changed in these mutants. This suggests that Paf1 complex may directly influence on H3K4 methylation by directly regulating the activity of Set1 or the stability of Set1 complex in an H2B ubiquitination independent manner.

Effects of Atomoxetine on Hyper-Locomotive Activity of the Prenatally Valproate-Exposed Rat Offspring

  • Choi, Chang Soon;Hong, Minha;Kim, Ki Chan;Kim, Ji-Woon;Yang, Sung Min;Seung, Hana;Ko, Mee Jung;Choi, Dong-Hee;You, Jueng Soo;Shin, Chan Young;Bahn, Geon Ho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.406-413
    • /
    • 2014
  • to valproic acid (VPA) during pregnancy produces ASD-like core behavioral phenotypes as well as hyperactivity in offspring both in human and experimental animals, which makes it a plausible model to study ASD-related neurobiological processes. In this study, we examined the effects of two of currently available attention defecit hyperactivity disorder (ADHD) medications, methylphenidate (MPH) and atomoxetine (ATX) targeting dopamine and norepinephrine transporters (DAT and NET), respectively, on hyperactive behavior of prenatally VPA-exposed rat offspring. In the prefrontal cortex of VPA exposed rat offspring, both mRNA and protein expression of DAT was increased as compared with control. VPA function as a histone deacetylase inhibitor (HDACi) and chromatin immunoprecipitation experiments demonstrated that the acetylation of histone bound to DAT gene promoter was increased in VPA-exposed rat offspring suggesting epigenetic mechanism of DAT regulation. Similarly, the expression of NET was increased, possibly via increased histone acetylation in prefrontal cortex of VPA-exposed rat offspring. When we treated the VPA-exposed rat offspring with ATX, a NET selective inhibitor, hyperactivity was reversed to control level. In contrast, MPH that inhibits both DAT and NET, did not produce inhibitory effects against hyperactivity. The results suggest that NET abnormalities may underlie the hyperactive phenotype in VPA animal model of ASD. Profiling the pharmacological responsiveness as well as investigating underlying mechanism in multiple models of ASD and ADHD may provide more insights into the neurobiological correlates regulating the behavioral abnormalities.

Morphological and Molecular Characterization of Alternaria Isolates from Solanaceous Crops (가지과 작물에서 분리한 Alternaria 속 균의 형태적, 분자생물학적 특징)

  • Yu, Seung-Hun;Cho, Hye-Sun;Kim, Byung-Ryun;Park, Myung-Soo
    • The Korean Journal of Mycology
    • /
    • v.31 no.2
    • /
    • pp.103-113
    • /
    • 2003
  • Twenty five isolates of Alternaria were obtained from various solanaceous crops in Korea. For all isolates, morphological characteristics of the conidia were determined and compared with those of representative isolates of A. solani and A. tomatophila. A selection of the isolates and the representative Alternaria isolates were evaluated for Pathogenicity to potato, tomato, egg plant and red pepper. Molecular characteristics of 17 isolates of Alternaria inculding the representative isolates were determined using sequence analysis of IRS rDNA and histone H3 gene, and URP-PCR analysis. Based on morphological characteristics, the isolates from the solanaceous crops were grouped as identical or very similar to either A. tomatophila (ATO), A. solani (ASO), and unidentified Alternaria sp. (ASP). Isolates of ASO were moderately pathogenic to all the solanaceous crops tested, but ATO isolates were highly pathogenic to tomato and the ASP isolate was pathogenic only to potato. Among the molecular markers used in this study, the URP-PCR analysis was found to be appropriate for taxonomic resolution of these species. Based on the conidial morphology, pathogenicity test and molecular characteristics, A. tomatophila (early blight of tomato) could be distinguished from A. solani (early blight of potato), and the Alternaria sp. (ASP) from potato, which was closely related to ASO in conidial morphology, was considered as a new species.

Allergy Immunity Regulation and Synergism of Bifidobacteria (Bifidobacteria의 allergy 면역 조절과 synergism)

  • Cho, Kwang Keun;Choi, In Soon
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.482-499
    • /
    • 2017
  • Allergic diseases have increased over the past several decade worldwide including developing countries. Allergic inflammatory responses are caused by Th (T helper)2 immune responses, triggered by allergen ingestion by antigen presenting cells such as dendritic cells (DCs). Intestinal microorganisms control the metabolism and physiological functions of the host, contribute to early immune system maturation during the early life, and homeostasis and epithelial integrity during life. Bifidobacteria have strain-specific immunostimulatory properties in the Th1/Th2 balance, inhibit TSLP (thymic stromal lymphopoietin) and IgE expression, and promote Flg (Filaggrin) and FoxP3 (Treg) expression to alleviate allergies. In addition, unmethylated CpG motif ODN (oligodeoxynucleotides) is recognized by TLR (toll-like receptors)9 of B cells and plasmacytoid dendritic cells (pDCs) to induce innate and adaptive immune responses, while the butyrate produced by Clostridium butyricum activates the GPR (G-protein coupled receptors)109a signaling pathway to induce the expression of anti-inflammatory gene of pDCs, and directly stimulates the proliferation of thymically derived regulatory T (tTreg) cells through the activation of GPR43 or inhibits the activity of HADC (histone deacetylase) to differentiate naive $CD4^+$ T cells into pTreg cells through the histone H3 acetylation of Foxp3 gene intronic enhancer.

Effects of an Anti-cancer Drug, Tubastatin A, on the Growth and Development of Immature Oocytes in Mice (항암제 tubastatin A에 의한 생쥐 미성숙 난모세포의 성장과 발달에 미치는 효과)

  • Choi, Yun-Jung;Min, Gyesik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.105-111
    • /
    • 2019
  • In recent years, progress has been made in the search for the development of new anti-cancer agents by employing specific inhibitors of histone deacetylase (HDAC)-6 to block signal transduction pathways in cancer cells. This study examined the effects of tubastatin A (TubA), an HDAC-6 inhibitor, on the growth and development of immature oocytes in murine ovaries using RNA sequencing analysis. The results from a gene set enrichment analysis (GSEA) indicated that the expression of most of the gene sets involved in the cell cycle and control and progression of meiosis decreased in the TubA-treated group as compared with that in germinal vesicle (GV) stage oocytes. In addition, an ingenuity pathway analysis (IPA) suggested that TubA not only caused increased expression of p53 and pRB and decreased expression of CDK4/6 and cyclin D but also caused elevated expression of genes involved in the control of the DNA check point in G2/M stage oocytes. These results suggest that TubA may induce cell cycle arrest and apoptosis through the induction of changes in the expression of genes involved in signal transduction pathways associated with DNA damage and the cell cycle of immature oocytes in the ovary.

Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health - A review

  • Ali, Qasim;Ma, Sen;La, Shaokai;Guo, Zhiguo;Liu, Boshuai;Gao, Zimin;Farooq, Umar;Wang, Zhichang;Zhu, Xiaoyan;Cui, Yalei;Li, Defeng;Shi, Yinghua
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1461-1478
    • /
    • 2022
  • The maintenance of poultry gut health is complex depending on the intricate balance among diet, the commensal microbiota, and the mucosa, including the gut epithelium and the superimposing mucus layer. Changes in microflora composition and abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating impacts on altering the landscape of gut microbiota, which further leads to antibiotic resistance or spread the pathogenic populations. By eliciting the landscape of gut microbiota, strategies should be made to break down the regulatory signals of pathogenic bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counterbalance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host endogenous enzymes but can be fermented by symbiotic microbiota to produce short-chain fatty acids (SCFAs). This is one of the primary modes through which the gut microbiota interacts and communicate with the host. The majority of SCFAs are produced in the large intestine (particularly in the caecum), where they are taken up by the enterocytes or transported through portal vein circulation into the bloodstream. Recent shreds of evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs either by activating G-protein-coupled receptors or affecting epigenetic modifications in the genome through inducing histone acetylase activities and inhibiting histone deacetylases. Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, mucosal integrity, immune homeostasis, and immune maturation. In this review article, we will focus on DFs, which directly interact with gut microbes and lead to the production of SCFAs. Further, we will discuss the current molecular mechanisms of how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and host physiology and gut health.