Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.027

Effects of Atomoxetine on Hyper-Locomotive Activity of the Prenatally Valproate-Exposed Rat Offspring  

Choi, Chang Soon (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences)
Hong, Minha (Department of Psychiatry, School of Medicine, Dankook University Hospital)
Kim, Ki Chan (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences)
Kim, Ji-Woon (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences)
Yang, Sung Min (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences)
Seung, Hana (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences)
Ko, Mee Jung (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences)
Choi, Dong-Hee (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences)
You, Jueng Soo (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences)
Shin, Chan Young (Department of Neuroscience and Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences)
Bahn, Geon Ho (Department of Neuropsychiatry, School of Medicine, Kyung Hee University)
Publication Information
Biomolecules & Therapeutics / v.22, no.5, 2014 , pp. 406-413 More about this Journal
Abstract
to valproic acid (VPA) during pregnancy produces ASD-like core behavioral phenotypes as well as hyperactivity in offspring both in human and experimental animals, which makes it a plausible model to study ASD-related neurobiological processes. In this study, we examined the effects of two of currently available attention defecit hyperactivity disorder (ADHD) medications, methylphenidate (MPH) and atomoxetine (ATX) targeting dopamine and norepinephrine transporters (DAT and NET), respectively, on hyperactive behavior of prenatally VPA-exposed rat offspring. In the prefrontal cortex of VPA exposed rat offspring, both mRNA and protein expression of DAT was increased as compared with control. VPA function as a histone deacetylase inhibitor (HDACi) and chromatin immunoprecipitation experiments demonstrated that the acetylation of histone bound to DAT gene promoter was increased in VPA-exposed rat offspring suggesting epigenetic mechanism of DAT regulation. Similarly, the expression of NET was increased, possibly via increased histone acetylation in prefrontal cortex of VPA-exposed rat offspring. When we treated the VPA-exposed rat offspring with ATX, a NET selective inhibitor, hyperactivity was reversed to control level. In contrast, MPH that inhibits both DAT and NET, did not produce inhibitory effects against hyperactivity. The results suggest that NET abnormalities may underlie the hyperactive phenotype in VPA animal model of ASD. Profiling the pharmacological responsiveness as well as investigating underlying mechanism in multiple models of ASD and ADHD may provide more insights into the neurobiological correlates regulating the behavioral abnormalities.
Keywords
Valproic acid; Autism; Hyperactivity; Norepinephrine transporter; Atomoxetine;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ali, E. H. and Elgoly, A. H. (2013) Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: Comparison with valproic acid autistic model. Pharmacol. Biochem. Behav. 111, 102-110.   DOI
2 Baf, M. H., Subhash, M. N., Lakshmana, K. M. and Rao, B. S. (1994) Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem. Int. 24, 67-72.   DOI   ScienceOn
3 Banerjee, S., Riordan, M. and Bhat, M. (2014) Genetic aspects of autism spectrum disorders: insights from animal models. Front. Cell. Neurosci. 8, 58.
4 Barr, A. M., Lehmann-Masten, V., Paulus, M., Gainetdinov, R. R., Caron, M. G. and Geyer, M. A. (2004) The selective serotonin-2A receptor antagonist M100907 reverses behavioral deficits in dopamine transporter knockout mice. Neuropsychopharmacology 29, 221-228.   DOI
5 Bayles, R., Baker, E., Eikelis, N., El-Osta, A. and Lambert, G. (2010) Histone modifications regulate the norepinephrine transporter gene. Cell Cycle 9, 4600-4601.   DOI
6 Biederman, J. and Spencer, T. (1999) Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol. Psychiatry 46, 1234-1242.   DOI   ScienceOn
7 Boy, F., Evans, C. J., Edden, R. A., Lawrence, A. D., Singh, K. D., Husain, M. and Sumner, P. (2011) Dorsolateral prefrontal gammaaminobutyric acid in men predicts individual differences in rash impulsivity. Biol. Psychiatry 70, 866-872.   DOI
8 Bymaster, F. P., Katner, J. S., Nelson, D. L., Hemrick-Luecke, S. K., Threlkeld, P. G., Heiligenstein, J. H., Morin, S. M., Gehlert, D. R. and Perry, K. W. (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27, 699-711.   DOI   ScienceOn
9 Christianson, A. L., Chesler, N. and Kromberg, J. G. (1994) Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev. Med. Child Neurol. 36, 361-369.
10 Consortium. (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78, 23-33.
11 Edden, R. A., Crocetti, D., Zhu, H., Gilbert, D. L. and Mostofsky, S. H. (2012) Reduced GABA concentration in attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 69, 750-753.
12 Flores, J. A., Galan-Rodriguez, B., Ramiro-Fuentes, S. and Fernandez-Espejo, E. (2006) Role for dopamine neurons of the rostral linear nucleus and periaqueductal gray in the rewarding and sensitizing properties of heroin. Neuropsychopharmacology 31, 1475-1488.   DOI
13 Gadow, K. D., Devincent, C. J., Pomeroy, J. and Azizian, A. (2005) Comparison of DSM-IV symptoms in elementary school-age children with PDD versus clinic and community samples. Autism 9, 392-415.   DOI
14 Gatley, S. J., Pan, D., Chen, R., Chaturvedi, G. and Ding, Y. S. (1996) Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Sci. 58, 231-239.
15 Han, H., Ma, Y., Eun, J. S., Hong, J. T. and Oh, K. W. (2008) Anxiolyticlike effects of cyclopeptide fraction alkaloids of Zizyphi Spinosi semen: possible involvement of GABAA receptors. Biomol. Ther. 16, 261-269.   DOI
16 Kim, K. C., Lee, D. K., Go, H. S., Kim, P., Choi, C. S., Kim, J. W., Jeon, S. J., Song, M. R. and Shin, C. Y. (2014) Pax6-dependent cortical glutamatergic neuronal differentiation regulates autism-like behavior in prenatally valproic acid-exposed rat offspring. Mol. Neurobiol. 49, 512-528.   DOI
17 Hunt, R. D., Arnsten, A. F. and Asbell, M. D. (1995) An open trial of guanfacine in the treatment of attention-deficit hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 34, 50-54.   DOI
18 Jaselskis, C. A., Cook, E. H., JR., Fletcher, K. E. and Leventhal, B. L. (1992) Clonidine treatment of hyperactive and impulsive children with autistic disorder. J. Clin. Psychopharmacol. 12, 322-327.
19 Kim, K. C., Kim, P., Go, H. S., Choi, C. S., Park, J. H., Kim, H. J., Jeon, S. J., Dela Pena, I. C., Han, S. H., Cheong, J. H., Ryu, J. H. and Shin, C. Y. (2013) Male-specific alteration in excitatory postsynaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J. Neurochem. 124, 832-843.   DOI   ScienceOn
20 Lempp, T., Toennes, S. W., Wunder, C., Russe, O. Q., Moser, C. V., Kynast, K. L., Freitag, C. M. and Niederberger, E. (2013) Altered gene expression in the prefrontal cortex of young rats induced by the ADHD drug atomoxetine. Prog. Neuropsychopharmacol. Biol. Psychiatry 40, 221-228.
21 Leyfer, O. T., Folstein, S. E., Bacalman, S., Davis, N. O., Dinh, E., Morgan, J., Tager-Flusberg, H. and Lainhart, J. E. (2006) Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J. Autism Dev. Disord. 36, 849-861.   DOI
22 Ludolph, A. G., Udvardi, P. T., Schaz, U., Henes, C., Adolph, O., Weigt, H. U., Fegert, J. M., Boeckers, T. M. and Fohr, K. J. (2010) Atomoxetine acts as an NMDA receptor blocker in clinically relevant concentrations. Br. J. Pharmacol. 160, 283-291.   DOI
23 Shaywitz, B. A., Yager, R. D. and Klopper, J. H. (1976) Selective brain dopamine depletion in developing rats: an experimental model of minimal brain dysfunction. Science 191, 305-308.   DOI
24 Russell, V., De Villiers, A., Sagvolden, T., Lamm, M. and Taljaard, J. (1995) Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder--the spontaneously hypertensive rat. Brain Res. 676, 343-351.   DOI
25 Schneider, T. and Przewlocki, R. (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30, 80-89.   DOI   ScienceOn
26 Schneider, T., Ziolkowska, B., Gieryk, A., Tyminska, A. and Przewlocki, R. (2007) Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism. Psychopharmacology (Berl), 193, 547-555.   DOI
27 Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T. and Baird, G. (2008) Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J. Am. Acad. Child Adolesc. Psychiatry 47, 921-929.   DOI
28 Stigler, K. A., Desmond, L. A., Posey, D. J., Wiegand, R. E. and Mcdougle, C. J. (2004) A naturalistic retrospective analysis of psychostimulants in pervasive developmental disorders. J. Child Adolesc. Psychopharmacol. 14, 49-56.   DOI
29 Sumner, P., Edden, R. A., Bompas, A., Evans, C. J. and Singh, K. D. (2010) More GABA, less distraction: a neurochemical predictor of motor decision speed. Nat. Neurosci. 13, 825-827.   DOI
30 Ma, C. L., Arnsten, A. F. and Li, B. M. (2005) Locomotor hyperactivity induced by blockade of prefrontal cortical alpha2-adrenoceptors in monkeys. Biol. Psychiatry 57, 192-195.   DOI   ScienceOn
31 Masuo, Y., Ishido, M., Morita, M., Sawa, H., Nagashima, K. and Niki, E. (2007) Behavioural characteristics and gene expression in the hyperactive wiggling (Wig) rat. Eur. J. Neurosci. 25, 3659-3666.   DOI
32 Munarriz, R., Bennett, L. and Goldstein, I. (2002) Risperidone in children with autism and serious behavioral problems. N. Engl. J. Med. 347, 1890-1891; author reply 1890-1891.   DOI
33 Narita, N., Kato, M., Tazoe, M., Miyazaki, K., Narita, M. and Okado, N. (2002) Increased monoamine concentration in the brain and blood of fetal thalidomide-and valproic acid-exposed rat: putative animal models for autism. Pediatr. Res. 52, 576-579.
34 Nelson, J. D., Denisenko, O. and Bomsztyk, K. (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1, 179-185.   DOI
35 Pandolfo, P., Machado, N. J., Kofalvi, A., Takahashi, R. N. and Cunha, R. A. (2013) Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur. Neuropsychopharmacol. 23, 317-328.   DOI
36 Phiel, C. J., Zhang, F., Huang, E. Y., Guenther, M. G., Lazar, M. A. and Klein, P. S. (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276, 36734-36741.   DOI   ScienceOn
37 Rinaldi, T., Kulangara, K., Antoniello, K. and Markram, H. (2007) Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl. Acad. Sci. U.S.A. 104, 13501-13506.   DOI   ScienceOn
38 Wilkins, J. and Matson, J. L. (2009) A comparison of social skills profiles in intellectually disabled adults with and without ASD. Behav. Modif. 33, 143-155.   DOI
39 Vizi, E. S., Zsilla, G., Caron, M. G. and Kiss, J. P. (2004) Uptake and release of norepinephrine by serotonergic terminals in norepinephrine transporter knock-out mice: implications for the action of selective serotonin reuptake inhibitors. J. Neurosci. 24, 7888-7894.   DOI
40 Watanabe, Y., Fujita, M., Ito, Y., Okada, T., Kusuoka, H. and Nishimura, T. (1997) Brain dopamine transporter in spontaneously hypertensive rats. J. Nucl. Med. 38, 470-474.
41 Williams, G., King, J., Cunningham, M., Stephan, M., Kerr, B. and Hersh, J. H. (2001) Fetal valproate syndrome and autism: additional evidence of an association. Dev. Med. Child Neurol. 43, 202-206.   DOI
42 Wong, D. T., Threlkeld, P. G., Best, K. L. and Bymaster, F. P. (1982) A new inhibitor of norepinephrine uptake devoid of affinity for receptors in rat brain. J. Pharmacol. Exp. Ther. 222, 61-65.
43 Yamashita, M., Fukushima, S., Shen, H. W., Hall, F. S., Uhl, G. R., Numachi, Y., Kobayashi, H. and Sora, I. (2006) Norepinephrine transporter blockade can normalize the prepulse inhibition deficits found in dopamine transporter knockout mice. Neuropsychopharmacology 31, 2132-2139.
44 Young, J. G., Kavanagh, M. E., Anderson, G. M., Shaywitz, B. A. and Cohen, D. J. (1982) Clinical neurochemistry of autism and associated disorders. J. Autism Dev. Disord. 12, 147-165.   DOI
45 Zhang, S. J., Huguenard, J. R. and Prince, D. A. (1997) GABAA receptor-mediated Cl-currents in rat thalamic reticular and relay neurons. J. Neurophysiol. 78, 2280-2286.   DOI
46 Research Units on Pediatric Psychopharmacology Autism Network. (2005) Randomized, controlled, crossover trial of methylphenidate in pervasive developmental disorders with hyperactivity. Arch. Gen. Psychiatry 62, 1266-1274.   DOI
47 Barr, C. L., Wigg, K., Zai, G., Roberts, W., Malone, M., Schachar, R., Tannock, R. and Kennedy, J. L. (2001) Attention-deficit hyperactivity disorder and the adrenergic receptors alpha 1C and alpha 2C. Mol. Psychiatry 6, 334-337.   DOI   ScienceOn
48 Challman, T. D. and Lipsky, J. J. (2000) Methylphenidate: its pharmacology and uses. Mayo Clin. Proc. 75, 711-721.   DOI
49 Lipska, B. K., Jaskiw, G. E. and Weinberger, D. R. (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9, 67-75.   DOI   ScienceOn
50 Xu, F., Gainetdinov, R. R., Wetsel, W. C., Jones, S. R., Bohn, L. M., Miller, G. W., Wang, Y. M. and Caron, M. G. (2000) Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat. Neurosci. 3, 465-471.   DOI