• Title/Summary/Keyword: Histomorphometric values

Search Result 40, Processing Time 0.028 seconds

Effects of ibuprofen-loaded TiO2 nanotube dental implants in alloxan-induced diabetic rabbits

  • Kim, Young-Gyo;Kim, Wan-Tae;Jung, Bo Hyun;Yoo, Ki-Yeon;Um, Heung-Sik;Chang, Beom-Seok;Lee, Jae-Kwan;Choi, Won-Youl
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.5
    • /
    • pp.352-363
    • /
    • 2021
  • Purpose: Some systemic conditions, especially diabetes mellitus (DM), adversely affect dental implant success. This study aimed to investigate the effects of ibuprofen-loaded TiO2 nanotube (ILTN) dental implants in alloxan-induced diabetic rabbits. Methods: Twenty-six New Zealand white rabbits were treated with alloxan monohydrate to induce DM. At 2 weeks following DM induction, 3 types of implants (sandblasted, large-grit, and acid-etched [SLA], ILTN, and machined) were placed into the proximal tibia in the 10 rabbits that survived following DM induction. Each type of implant was fitted randomly in 1 of the holes (round-robin method). The animals were administered alizarin (at 3 weeks) and calcein (at 6 weeks) as fluorescent bone markers, and were sacrificed at 8 weeks for radiographic and histomorphometric analyses. Results: TiO2 nanotube arrays of ~70 nm in diameter and ~17 ㎛ in thickness were obtained, and ibuprofen was loaded into the TiO2 nanotube arrays. A total of 26 rabbits were treated with alloxan monohydrate and only 10 rabbits survived. The 10 surviving rabbits showed a blood glucose level of 300 mg/dL or higher, and the implants were placed in these diabetic rabbits. The implant stability quotient (ISQ) and bone-to-implant contact (BIC) values were significantly higher in the ILTN group (ISQ: 61.8, BIC: 41.3%) and SLA group (ISQ: 62.6, BIC: 46.3%) than in the machined group (ISQ: 53.4, BIC: 20.2%), but the difference in the BIC percentage between the SLA and ILTN groups was not statistically significant (P=0.628). However, the bone area percentage was significantly higher in the ILTN group (78.0%) than in the SLA group (52.1%; P=0.000). Conclusions: The: ILTN dental implants showed better stability (ISQ) and BIC than the machined implants; however, these values were similar to the commercially used SLA implants in the 2-week diabetic rabbit model.

Periodontal healing using a collagen matrix with periodontal ligament progenitor cells in a dehiscence defect model in beagle dogs

  • Yoo, Seung-Yoon;Lee, Jung-Seok;Cha, Jae-Kook;Kim, Seul-Ki;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.4
    • /
    • pp.215-227
    • /
    • 2019
  • Purpose: To histologically characterize periodontal healing at 8 weeks in surgically created dehiscence defects in beagle dogs that received a collagen matrix with periodontal ligament (PDL) progenitor cells. Methods: The bilateral maxillary premolars and first molars in 6 animals were used. Standardized experimental dehiscence defects were made on the buccal side of 3 premolars, and primary culturing of PDL progenitor cells was performed on the molars. Collagen matrix was used as a scaffold and a delivery system for PDL progenitor cells. The experimental sites were grafted with collagen matrix (COL), PDL progenitor cells with collagen matrix (COL/CELL), or left without any material (CTL). Histologic and histomorphometric analyses were performed after 8 weeks. Results: The defect height from the cementoenamel junction to the most apical point of cementum removal did not significantly differ across the CTL, COL, and COL/CELL groups, at $4.57{\pm}0.28$, $4.56{\pm}0.41$, and $4.64{\pm}0.27mm$ (mean ${\pm}$ standard deviation), respectively; the corresponding values for epithelial adhesion were $1.41{\pm}0.51$, $0.85{\pm}0.29$, and $0.30{\pm}0.41mm$ (P<0.05), the heights of new bone regeneration were $1.32{\pm}0.44$, $1.65{\pm}0.52$, and $1.93{\pm}0.61mm$ (P<0.05), and the cementum regeneration values were $1.15{\pm}0.42$, $1.81{\pm}0.46$, and $2.57{\pm}0.56mm$ (P<0.05). There was significantly more new bone formation in the COL/CELL group than in the CTL group, and new cementum length was also significantly higher in the COL/CELL group. However, there were no significant differences in the width of new cementum among the groups. Conclusions: PDL progenitor cells carried by a synthetic collagen matrix may enhance periodontal regeneration, including cementum and new bone formation.

The impact of polydeoxyribonucleotide on early bone formation in lateral-window sinus floor elevation with simultaneous implant placement

  • Dongseob Lee;Jungwon Lee;Ki-Tae Koo;Yang-Jo Seol;Yong-Moo Lee
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.2
    • /
    • pp.157-169
    • /
    • 2023
  • Purpose: The aim of this study was to evaluate the impact of polydeoxyribonucleotide (PDRN) on histologic outcomes when implant placement and lateral sinus floor elevation are performed simultaneously. Methods: Three bimaxillary premolars (P2, P3, and P4) were extracted from 4 beagle dogs 2 months before lateral sinus floor elevation. After lateral elevation of the sinus membrane, each sinus was allocated to either the test or control group. Sinuses underwent either 1) collagenated synthetic bone graft with PDRN following lateral sinus floor elevation (test group) or 2) collagenated synthetic bone graft without PDRN after lateral sinus floor elevation (control group). Eight weeks after the surgical procedure, all animals were euthanised for a histologic and histomorphometric assessment. Augmented height (AH), protruding height (PH), and bone-to-implant contact in pristine (BICp) and augmented (BICa) bone were measured. The composition of the augmented area, which was divided into 3 areas of interest located in coronal, middle and apical areas (AOI_C, AOI_M, and AOI_A), was calculated with 3 parameters: the area percentage of new bone (pNB), residual bone graft particle (pRBP), and fibrovascular connective tissue (pFVT). Results: AH, PH, BICp, BICa total, BICa coronal, and BICa middle values were not significantly different between sinuses in the control and test groups (all P>0.05). The BICa apical of sinuses in the test group (76.7%±9.3%) showed statistically higher values than those of sinuses in the control group (55.6%±22.1%) (P=0.038). pNB, pRBP, and pFVT showed statistically significant differences between the 2 groups in AOI_A (P=0.038, P=0.028, and P=0.007, respectively). pNB, pRBP, and pFVT in AOI_C and AOI_M were not significantly different between samples in the control and test groups (all P>0.05). Conclusions: The histologic findings revealed that lateral sinus floor elevation with PDRN might improve early new bone formation and enable higher bone-to-implant contact.

Osseointegration of the titanium implant coated with rhTGF-${\beta}2$/PLGA particles by electrospray: a preliminary microCT analyzing rabbit study (rhTGF-${\beta}2$/PLGA 복합체를 electrospray법으로 코팅한 타이타늄 임플란트 골 유착의 microCT 계측: a preliminary rabbit study)

  • Lee, Woo-Sung;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee;Park, Ji-Man;Park, Yoon-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.298-304
    • /
    • 2014
  • Purpose: This preliminary rabbit study was conducted to evaluate the effect of recombinant human transforming growth factor-${\beta}2$ (rhTGF-${\beta}2$)/poly lactic-co-glycolic acid (PLGA) coating on osseointegration of the titanium (Ti) implant. Materials and methods: Eight Ti implants were anodized with 300 voltages for three minutes. Four of those were coated with rhTGF-${\beta}2$/PLGA by an electrospray method as the experimental group. The implants were placed into tibiae of four New Zealand rabbits, two implants per a tibia, one implant per each group. After 3 and 6 weeks, every two rabbits were sacrificed and micro-computed tomography (microCT) was taken for histomorphometric analysis. Results: In scanning electron microscope (SEM) image, the surface of rhTGF-${\beta}2$/PLGA coated Ti implant showed well distributed particles. Although statistically insignificant, microCT analysis showed that experimental group has higher bone volume / total volume (BV/TV) and trabecular thickness (Tb.Th) values relatively. Cross sectional view also showed more newly formed bone in the experimental group. Conclusion: In the limitation of this study, rhTGF-${\beta}2$/PLGA particles coating on the Ti implant show the possibility of more favorable quantity of newly formed bone after implant installation.

The healing effect of platelet-rich plasma on xenograft in peri-implant bone defects in rabbits

  • Peng, Wang;Kim, Il-kyu;Cho, Hyun-young;Seo, Ji-Hoon;Lee, Dong-Hwan;Jang, Jun-Min;Park, Seung-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.16.1-16.9
    • /
    • 2016
  • Background: The association of biomaterial combined with repair factor-like platelet-rich plasma (PRP) has prospective values. Bovine-derived xenograft has been identified as an osteoconductive and biocompatible grafting material that provides osseointegration ability. PRP has become a valuable adjunctive agent to promote healing in a lot of dental and oral surgery procedures. However, there are controversies with respect to the regenerative capacity of PRP and the real benefits of its use in bone grafts. The purpose of this study was to assess the influence of PRP combined with xenograft for the repair of peri-implant bone defects. Methods: Twelve rabbits were used in this study, and the experimental surgery with implant installation was performed simultaneously. Autologous PRP was prepared before the surgical procedure. An intrabony defect (7.0 mm in diameter and 3.0 mm deep) was created in the tibia of each rabbit; then, 24 titanium dental implants (3.0 mm in diameter and 8.5 mm long) were inserted into these osteotomy sites. Thus, a standardized gap (4.0 mm) was established between the surrounding bony walls and the implant surface. The gaps were treated with either xenograft alone (control group) or xenograft combined with PRP (experimental group). After healing for 1, 2, 3, 4, 5, and 6 weeks, the rabbits were sacrificed with an overdose of KCl solution. Two rabbits were killed at each time, and the samples including dental implants and surrounding bone were collected and processed for histological analysis. Results: More newly formed bone and a better bone healing process were observed in control group. The histomorphometric analysis revealed that the mean percentage of bone-to-implant contact in the control group was significantly higher than that of the experimental group (25.23 vs. 8.16 %; P < 0.05, independent-simple t test, analysis of variance [ANOVA]). Conclusions: The results indicate that in the addition of PRP to bovine-derived xenograft in the repair of bone defects around the implant, PRP may delay peri-implant bone healing.

Impact of lattice versus solid structure of 3D-printed multiroot dental implants using Ti-6Al-4V: a preclinical pilot study

  • Lee, Jungwon;Li, Ling;Song, Hyun-Young;Son, Min-Jung;Lee, Yong-Moo;Koo, Ki-Tae
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.4
    • /
    • pp.338-350
    • /
    • 2022
  • Purpose: Various studies have investigated 3-dimensional (3D)-printed implants using Ti6Al-4V powder; however, multi-root 3D-printed implants have not been fully investigated. The purpose of this study was to explore the stability of multirooted 3D-printed implants with lattice and solid structures. The secondary outcomes were comparisons between the 2 types of 3D-printed implants in micro-computed tomographic and histological analyses. Methods: Lattice- and solid-type 3D-printed implants for the left and right mandibular third premolars in beagle dogs were fabricated. Four implants in each group were placed immediately following tooth extraction. Implant stability measurement and periapical X-rays were performed every 2 weeks for 12 weeks. Peri-implant bone volume/tissue volume (BV/TV) and bone mineral density (BMD) were measured by micro-computed tomography. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were measured in histomorphometric analyses. Results: All 4 lattice-type 3D-printed implants survived. Three solid-type 3D-printed implants were removed before the planned sacrifice date due to implant mobility. A slight, gradual increase in implant stability values from implant surgery to 4 weeks after surgery was observed in the lattice-type 3D-printed implants. The marginal bone change of the surviving solid-type 3D-printed implant was approximately 5 mm, whereas the value was approximately 2 mm in the lattice-type 3D-printed implants. BV/TV and BMD in the lattice type 3D-printed implants were similar to those in the surviving solid-type implant. However, BIC and BAFO were lower in the surviving solid-type 3D-printed implant than in the lattice-type 3D-printed implants. Conclusions: Within the limits of this preclinical study, 3D-printed implants of double-rooted teeth showed high primary stability. However, 3D-printed implants with interlocking structures such as lattices might provide high secondary stability and successful osseointegration.

Osseointegration of zirconia implant in the tibia of pigs (돼지의 경골에 식립된 지르코니아 임플란트의 골유착에 관한 연구)

  • Kim, Lee-Kyoung;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.190-198
    • /
    • 2013
  • Purpose: The purposes of this study were to investigate osseointegration around zirconia implants which had machined or alumina sandblasted surface, and to compare the results with titanium implants. Materials and methods: The study was performed on the tibia of 6 pigs. Three types of implants were investigated: group T-titanium implant, group Z-machined zirconia implant, group ZS-alumina sandblasting treated zirconia implant. Zirconia implants were manufactured from yttria-stabilized tetragonal zirconia polycrystalline (Acucera Inc., Pocheon, Korea). A total of 36 implants were installed in pigs' tibias. After 1, 4 and 12 weeks of healing period, the periotest and the histomorphometric analysis were performed. The data were analyzed using one-way ANOVA and significance was assessed by the Scheffe test (${\alpha}=.05$). Results: In the measurement of surface roughness, highest Ra value was measured in group T with significant difference. No significant differences were found among groups regarding Periotest values. After 1 week, in comparison of bone to implant contact (BIC), group Z showed higher value with significant difference. In comparison of bone area (BA), group T and group Z showed higher value with significant difference than group ZS. After 4 weeks, in comparison of BIC, group T showed higher value with significant difference. Comparison of BA showed no significant difference among each implant. After 12 weeks, the highest mean BIC values were found in group T with significant difference. Group ZS showed higher BIC value with significant difference than group Z. In comparison of BA, group T and group ZS showed higher value with significant difference than group Z. Conclusion: Zirconia implant showed low levels of osseointegration in this experiment. Modification of surface structure should be taken into consideration in designing zirconia implants to improve the success rate.

Bone-implant contact and mobility of surface-fronted orthodontic micro-implants in dogs (성견에서 표면처리된 교정용 마미크로 임플랜트의 골 접촉률 및 동요도)

  • Park, Seung-Hyun;Kim, Seong-Hun;Ryu, Jun-Ha;Kang, Yoon-Goo;Chung, Kyu-Rhim;Kook, Yoon-Ah
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.416-426
    • /
    • 2008
  • The purpose of this study was to evaluate the mobility and ratio of the bone-implant contact (BIC) of a sandblasted, large grit and acid-etched (SLA) orthodontic micro-implant. Methods: Ninety-six micro-implants (48 SLA and 48 machined) were implanted in the upper and lower buccal alveolar bone, and palatal bone of four beagle dogs. Two weeks after surgery, orthodontic force (150-200 g) was applied. Two beagles were sacrificed at 4-weeks and the other two at 12-weeks. Histomorphometric comparisons were made between the SLA experimental group and the machined micro-implant as a control group to determine the ratio of contact between the bone and implant. Micro-implant mobility was also evaluated using $Periotest^{(R)}$. Results: Periotest values showed no statistically significant difference in the upper alveolar and palatal bone between groups except for the lower buccal area. BIC in the upper buccal area showed no significant difference between groups both at 4-weeks and 12-weeks. However, both the groups showed a significant difference in BIC ratio in the rest of the experimental areas between 4 weeks and 12 weeks. The experimental group showed active bone remodeling around the bone-implant interface compared to the control group. Conclusions: There were significant differences in the BIC and the Periotest values between the surface-treated and machined micro-implants according to bone quality in the early stage.

AN EXPERIMENTAL STUDY OF NEWLY DESIGNED IMPLANT WITH RBM SURFACE IN THE RABBIT TIBIA : RESONANCE FREQUENCY ANALYSIS AND REMOVAL TORQUE STUDY

  • Won Mi-Kyoung;Park Chan-Jin;Chang Kyoung-Soo;Kim Chang-Whe;Kim Yung-Soo;Isa Zakiahbt Mohd;Ariffin Yusnidar Tajul
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.720-731
    • /
    • 2003
  • Statement of problem. The importance of fixture design and surface treatment. Purpose. The clinical success of dental in plants is affected by many factors such like as degree of osseointegration, the effective load dispersion for the prostheses, and a lot of attempts have been made to overcome the difficulties. In this study, efforts were made to find the possibility of clinical acceptance of the dental implants of newly designed surface and resorbable blast media surcace. Materials and methods. In this study, two groups of custom-made, screw-shaped implants were prepared. The first with the consisting of Branemark clone design and the other with the new design. These implants were divided into four groups according to the kinds of surface treatment. Four implants($AVANA^{(R)}$, Osstem, Busan, Korea)of each group were installed in twenty rabbits. Group A was consisted of Branemark done implant left as machined, Group B with Branemark clone implants with RBM(Resorbable blast media) surface, Group C with newly designed implants left as machined and Group D with newly designed implants with RBM surface. One of the twenty rabbits died from inflammation and the observation was made for six weeks. Specimens from four groups were observed using scanning electron microscopy with 40, 100, 1000 magnification power and microsurface structures were measured by white-light scanning interferometry for three dimensional surface roughness measurements(Accura $2000^{(R)}$, Intek-Plus, Korea.). Removal torque was measured in 17 rabbits using digital torque gauge(MGT 12R, Mark-10 corp., NY, U.S.A.) immediately after the sacrifice and two rabbits were used for the histologic preparation(EXAKT $310^{(R)}$, Heraeus Kulzer, wehrheim, Germany) of specimens and observed under light microscope. Resonance frequency measurement($Osstell^{(R)}$) was taken with the 19 rabbits at the beginning of the implant fixation and immediately after the sacrifice. Results. Following results were taken from the experiment. 1. The surface of the RBM implants as seen with SEM had rough and irregular pattern with reticular formation compared to that of fumed specimens showing different surface topographies. 2. The newly designed implant with RBM surface had high removal torque value among four groups with no statistical significance. The average removal torque was $49.95{\pm}6.70Ncm$ in Group A, $51.15{\pm}4.40Ncm$ in Group B, $50.78{\pm}9.37Ncm$ in Group C, $51.09{\pm}4.69Ncm$ in Group D. 3. The RFA values were $70.8{\pm}4.3Hz$ in Group A, $71.8{\pm}3.1Hz$ in Group B, $70.9{\pm}2.5Hz$, $72.7{\pm}2.5Hz$ in Group D. Higher values were noted in the groups which had surface treatment compared to the untreated groups with no statistical significance. 4. The results from the histomorphometric evaluation showed a mean percentage of bone-to-implant contact of $45{\pm}0.5%$ in Group A, $55{\pm}3%$ in Group B, $49.5{\pm}0.5%$ in Group C, and $55{\pm}3%$ in Group D. Quite amount of newly formed bone were observed at the surface RBM-treated implants in bone marrow space.

On the osseointegration of zirconia and titanium implants installed at defect site filled with xenograft material (이종골 이식을 동반한 지르코니아와 타이타늄 임플란트의 골유착에 관한 연구)

  • Kim, Sung-Won;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • Purpose: The purpose of this study was to compare zirconia implants with titanium implants from the view point of biomechanical stability and histologic response on osseointegration when those were placed with xenograft materials. Materials and methods: Specimens were divided into two groups; the control group was experimented with eighteen titanium implants which had anodized surface and the experimental group was experimented with eighteen sandblasted zirconia (Y-TZP) implants. At the tibias of six pigs, implants were installed into bone defect sites prepared surgically and treated with resorbable membranes and bovine bone. Two pigs were sacrificed after 1, 4 and 12 weeks respectively. Each implant site was sampled and processed for histologic and histomorphometric analysis. The stability of implants was evaluated with a $Periotest^{(R)}$. And the interfaces between bone and the implant were observed with a scanning electron microscope. Results: In stability analysis there was no significant difference between Periotest values of the control group and the experimental group. In histologic analysis with a light microscope after 4 weeks, there was new bone formation with the resorption of bovine bone and the active synthesis of osteoblasts in both groups. In bone-implant contact percentage there was significant difference between both groups (P<.05). In bone area percentage there was no significant difference between both groups. In analysis of both groups with a scanning electron microscope there was a gap between bone and a surface at 4 weeks and it was filled up with bone formed newly at 12 weeks. Conclusion: When accompanied by xenograft using membrane, bone to implant contact percentage of zirconia implants used in this experiment was significantly less than that of the titanium implants by surface treatment of anodic oxidation. So, it is considered that the improvement of zirconia implant is needed through ongoing research on surface treatment methods for its practical use.