• Title/Summary/Keyword: Histamine-release

Search Result 321, Processing Time 0.024 seconds

Characteristics of $Ca^{2+}$ Stores in Rabbit Cerebral Artery Myocytes

  • Kim, Sung-Joon;Kim, Jin-Kyung;So, In-Suk;Suh, Suk-Hyo;Lee, Sang-Jin;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.313-322
    • /
    • 1998
  • In a myocyte freshly isolated from rabbit cerebral artery, the characteristics of $Ca^{2+}$ release by histamine or caffeine were studied by microspectrofluorimetry using a $Ca^{2+}-binding$ fluorescent dye, fura-2. Histamine (5 ${\mu}M$) or caffeine (10 mM) induced a phasic rise of cytoplasmic free $Ca^{2+}$ concentration $([Ca^{2+}]_C)$ which could occur repetitively with extracellular $Ca^{2+}$ but only once or twice in $Ca^{2+}-free$ bathing solution. Also, the treatment with inhibitor of sarcoplasmic reticulum $Ca^{2+}-ATPase$ suppressed the rise of $[Ca^{2+}]_C$ by histamine or caffeine. In $Ca^{2+}-free$ bathing solution, short application of caffeine in advance markedly attenuated the effect of histamine, and vice versa. In normal $Ca^{2+}-containing$ solution with ryanodine (2 ${\mu}M$), the caffeine-induced rise of $[Ca^{2+}]_C$ occurred only once and in this condition, the response to histamine was also suppressed. On the other hand, in the presence of ryanodine, histamine could induce repetitive rise of $[Ca^{2+}]_C$ while the amplitude of peak rise became stepwisely decreased and eventually disappeared. These results suggest that two different $Ca^{2+}-release$ mechanisms (caffeine-sensitive and histamine-sensitive) are present in rabbit cerebral artery myocyte and the corresponding pools overlap each other functionally. Increase of $[Ca^{2+}]_C$ by histamine seems to partially activate ryanodine receptors present in caffeine-sensitive pool.

  • PDF

Dexmedetomidine Modulates Histamine-induced Ca2+ Signaling and Pro-inflammatory Cytokine Expression

  • Yang, Dongki;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.413-420
    • /
    • 2015
  • Dexmedetomidine is a sedative and analgesic agent that exerts its effects by selectively agonizing ${\alpha}2$ adrenoceptor. Histamine is a pathophysiological amine that activates G protein-coupled receptors, to induce $Ca^{2+}$ release and subsequent mediate or progress inflammation. Dexmedetomidine has been reported to exert inhibitory effect on inflammation both in vitro and in vivo studies. However, it is unclear that dexmedetomidine modulates histamine-induced signaling and pro-inflammatory cytokine expression. This study was carried out to assess how dexmedetomidine modulates histamine-induced $Ca^{2+}$ signaling and regulates the expression of pro-inflammatory cytokine genes encoding interleukin (IL)-6 and -8. To elucidate the regulatory role of dexmedetomidine on histamine signaling, HeLa cells and human salivary gland cells which are endogenously expressed histamine 1 receptor were used. Dexmedetomidine itself did not trigger $Ca^{2+}$ peak or increase in the presence or absence of external $Ca^{2+}$. When cells were stimulated with histamine after pretreatment with various concentrations of dexmedetomidine, we observed inhibited histamine-induced $[Ca^{2+}]_i$ signal in both cell types. Histamine stimulated IL-6 mRNA expression not IL-8 mRNA within 2 hrs, however this effect was attenuated by dexmedetomidine. Collectively, these findings suggest that dexmedetomidine modulates histamine-induced $Ca^{2+}$ signaling and IL-6 expression and will be useful for understanding the antagonistic properties of dexmedetomidine on histamine-induced signaling beyond its sedative effect.

Comparison of Anti-allergenic Activities of Various Polyphenols in Cell Assays

  • Yun, Sang-Sik;Kang, Mi-Young;Park, Jun-Cheol;Nam, Seok-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.139-146
    • /
    • 2010
  • The inhibitory effects of 25 polyphenols against in vitro allergic reactions were compared using biochemical and cell assays. Three polyphenols including curcumin, gallic acid, and quercetin suppressed the release of $\beta$-hexosaminidase from ionophore A23187-stimulated RBL-2H3 cells more effectively (>50% inhibition at $100{\mu}M$ concentration). They were found to have potencies in suppressing the release of histamine not only from ionophore A23187-, but also from immunoglobulin E (IgE)-stimulated RBL-2H3 cells. Moreover, such suppressive effects of the three polyphenols were also observed in A23187 plus PMA-costimulated rat peritoneal mast cells. The extent of inhibition were quantified as the respective polyphenol concentration that inhibit 50% ($IC_{50}$) of $\beta$-hexosaminidase or histamine release, showing an inhibition tendency with decreasing order of curcumin>gallic acid>quercetin. Down-regulation of $Ca^{2+}$ influx was suggested as the cause of the inhibition of $\beta$-hexosaminidase and histamine releases in these cells. The immune process inhibition was confirmed by the observed reduction in the gene expressions and release of pro-inflammatory cytokine tumor necrosis factor (TNF)-$\alpha$, interleukin (IL)-$1\beta$, and IL-4, due probably to antioxidant activity of the polyphenols. These findings illustrate that curcumin, gallic acid, and quercetin may be beneficial against allergic inflammatory diseases.

Effect of Kamichungbieum on Immune Reaction (가미청비음이 면역반응에 미치는 영향)

  • Eun Jae Soon;Lee Dong Hee;Jeon Yong Keun;Kwon Young An;Kwon Jin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1391-1396
    • /
    • 2004
  • The purpose of this research was to investigate the effects of supercritical fluid extract of Kamichungbieum (SFE) on immune reaction. SFE did not affect the subpopulation of murine splenocytes and increased the production of interleukin-2 in serum. Also, SFE inhibited the influx of Ca/sup 2+/ into mast cells and the release of histamine from mast cells. Furthermore, SFE decreased the phagocytic activity of murine macrophages, These results indicate that SFE may be useful for the treatment of allergy related disease via inhibition of histamine release from mast cells and decrease of phagocytic activity of murine macrophages.

Regulation of Histamine Release by Kappa Opioid Receptor in Rat Cortical Slices (백서 대뇌피질에서 Opioid Kappa수용체의 Histamine 유리조절기능에 관한 연구)

  • Kim, Kee-Won;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 1994
  • It has been shown that there are several subtypes of ${\kappa}$ opioid receptor. We examined ligand binding profiles and the effects of various opioid agonists on high potassium-stimulated release of $[^3H]$ histamine. We have evaluated the properties of $non-{\mu},\;non-{\delta},$ binding of $[^3H]\;DIP\;([^3H]\;diprenorphine),$ anonselective opioid antagonist, in rat cortex membranes. Binding $to\;{\mu}\;and\;{\delta}$ sites was inhibited by the use of an excess of competing selective agonists (DAMGO, DPDPE) for these sites. (-) Ethylketocyclazocine (EKC), DIP and bremazocine inhibited $[^3H]$ DIP binding. However, arylacetamides (U69593 and U50488H) gave little inhibition Replacement of sodium by NMDG and the addition of guanine nucleotide influenced the inhibitory potency of (-) EKC, an agonist for {\kappa}_1-and-{\kappa}_2-binding site, but not of bremazocine. This result suggests that bremazocine can be an antagonist at this binding site. Also, we have examined the opioid modulation of $K^+(30mM)-induced\;[^3H]\;histamine$ release in rat frontal cortex slices labeled with $1-[^3H]\;histidine$. The $[^3H]\; histamine$ release from cortex slices was inhibited by EKC in a concentration-dependent manner. However, the ${\delta}$ receptor selective agonists, DPDPE and deltorphine II, ${\mu}$ receptor agonists, DAMGO and TAPS, ${\kappa}_1-agonists$, U69593 and U50488H, and ${\varepsilon}-agonist,\;{\beta}-endorphin,$ did not. The concentration-response curve of EKC was shifted to right in the presence of naloxone, nor-binaltorphimine and bremazocine, respectively. These results suggest that ${\kappa}_2$ opioid receptor regulates histamine release in the fromtal cortex of the rat.

  • PDF

Studies on Hypotensive Mechanism of Ginseng Components (인삼성분(人蔘成分)의 혈압강하기전(血壓降下機轉)에 관한 연구(硏究))

  • Kim, Nak-Doo;Kim, In-Chull
    • Korean Journal of Pharmacognosy
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 1978
  • Total saponins and ether extracts of red and white ginseng were obtained and their effects on blood pressure in cat and their histamine liberating activities in rabbits were measured. 1) Ether extract of red ginseng showed a transient hypotensive effect and subsequently showed a remarkable and persistent hypotensive effect, whereas other three fractions, such as saponin fractions of red and white ginseng and ether extract of white ginseng showed only a initial transient hypotensive effects. 2) Histamine levels liberated into blood after administration of each fractions measured by the bioassay with guinea pig ileum. Ether extract of red ginseng immediately increased histamine contents in plasma but the histamine levels decreased to normal level within 10min in spite of decreased blood pressure was sustained. Although white ginseng saponin lowered blood pressure immediately when it is administered, histamine release was observed after 10min. The results suggest that hypotensive effects of ginseng seems to have no correlation with the histamine liberating activity. Ginseng appears to show hypotensive effect via some other mechanisms.

  • PDF

Histamine Releasing Factor (HRF) Evokes [3H] Dopamine Release by a Ca^{2+} - independent Pathway in Pheochromocytoma Cells

  • Seo, Ji-Hui;Kim, Hwa-Jung
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.268.2-269
    • /
    • 2002
  • The recombinant histamine-releasing factor (rHRF) has been reported to induce a secretion of histamine and cytokines from inflammation-related cell types such as basophils and eosinophils. and to function as a growth factor in immune B cells. Recently. decreased expression level of HRF protein was observed in brain of patients with Alzheimer disease and Downs syndrome. suggesting a possible significant role in neurological systems. (omitted)

  • PDF

Effect of Kamihyungbangjihwang-tang on Immediate-type Allergic Reaction (가미형방지황탕이 즉시형 알러지반응에 미치는 영향)

  • Kim Kwang Sik;Lee Dong Hee;Ko Dae Woong;Song Jung Mo;Eun Jae Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1270-1275
    • /
    • 2003
  • The purpose of this research was to investigate the effects of Kamihyungbangjihwang-tang (KHT) on immediate-type allergic reaction. KHT was composed of hyungbangjihwangtang (HJT) and Rubus coreanus Miquel (RC) and Aspalathus linear is (AL). KHT and HJT (500 mg/kg) inhibited the systemic anaphylaxis induced by compound 48/80 and inhibited the passive cutaneous anaphylaxis (PCA) induced by anti-dinitrophenyl (DNP)-IgE and DNP-human serum albumin (HSA) in vivo. In addition, KHT, HJT, RC and AL inhibited the release of histamine and increased the release of cAMP from rat peritoneal mast cells. The anti-allergic action of KHT was more potent than those of HJT. These results indicate that KHT may be useful for the prevention and treatment of type I allergy related disease via inhibition of histamine release from mast cells.

Achyranthes japonica Nakai Water Extract Suppresses Binding of IgE Antibody to Cell Surface FcεRI.

  • Shim, Sun Yup;Lee, Mina;Lee, Kyung Dong
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.4
    • /
    • pp.323-329
    • /
    • 2016
  • Achyranthes japonica Nakai (AJN) water extract has a variety of physiological properties, including anti-diabetic, anti-cancer, anti-inflammatory, anti-microbial, and anti-oxidative activities. In the present study, the inhibitory effects of AJN extract were investigated in high affinity immunoglobulin E receptor ($Fc{\varepsilon}RI$)-mediated KU812F cells activation. AJN extract showed suppressive effects on histamine release and intracellular calcium [$Ca^{2+}$]i elevation from anti$Fc{\varepsilon}RI$ antibody (CRA-1)-stimulated cells in a dose-dependent manner. Flow cytometric analysis showed that AJN extract treatment caused a dose-dependent decrease in the cell surface $Fc{\varepsilon}RI$ expression and the binding between the cell surface $Fc{\varepsilon}RI$ and the IgE antibody. Moreover, reverse transcription-polymerase chain reaction analysis showed that levels of the mRNA for the $Fc{\varepsilon}RI$ ${\alpha}$ chain was decreased by treatment with AJN extract. These results indicate that AJN extract may exert anti-allergic effects via the inhibition of calcium influx and histamine release, which occurs as a result from the downregulation of the binding of IgE antibody to cell surface $Fc{\varepsilon}RI$. This mechanism may occur through $Fc{\varepsilon}RI$ expression inhibition.

The Extract of Gleditsiae Spina Inhibits Mast Cell-Mediated Allergic Reactions Through the Inhibition of Histamine Release and Inflammatory Cytokine Production

  • Shin, Tae-Yong
    • Natural Product Sciences
    • /
    • v.16 no.3
    • /
    • pp.185-191
    • /
    • 2010
  • Mast cell-mediated allergic disease is involved in many diseases such as anaphylaxis, asthma and atopic dermatitis. The discovery of drugs for the treatment of allergic disease is an important subject in human health. In the present study, the effect of water extract of Gleditsiae Spina (WGS) (Leguminosae), on compound 48/80-induced systemic allergic reaction, anti-DNP IgE antibody-induced local allergic reaction, and histamine release from human mast cell line (HMC-1) cells were studied. In addition, the effect of WGS on phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187 (A23187)-induced gene expression and secretion of pro-inflammatory cytokines were investigated using HMC-1 cells. WGS was anally administered to mice for high and fast absorption. WGS inhibited compound 48/80-induced systemic allergic reaction. WGS dose-dependently decreased the IgE-mediated passive cutaneous anaphylaxis. WGS reduced histamine release from HMC-1 cells. In addition, WGS decreased the gene expression and secretion of pro-inflammatory cytokines in PMA plus A23187-stimulated HMC-1 cells. These findings provide evidence that WGS could be a candidate as an antiallergic agent.