• Title/Summary/Keyword: Highway Improvement

Search Result 267, Processing Time 0.026 seconds

Development of Computation Model for Traffic Accidents Risk Index - Focusing on Intersection in Chuncheon City - (교통사고 위험도 지수 산정 모델 개발 - 춘천시 교차로를 중심으로 -)

  • Shim, Kywan-Bho;Hwang, Kyung-Soo
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.61-74
    • /
    • 2009
  • Traffic accident risk index Computation model's development apply traffic level of significance about area of road user group, road and street network area, population group etc.. through numerical formula or model by countermeasure to reduce the occurrence rate of traffic accidents. Is real condition that is taking advantage of risk by tangent section through estimation model and by method to choose improvement way to intersection from outside the country, and is utilizing being applied in part business in domestic. However, question is brought in the accuracy being utilizing changing some to take external model in domestic real condition than individual development of model. Therefore, selection intersection estimation element through traffic accidents occurrence present condition, geometry structure, control way, traffic volume, turning traffic volume etc. in 96 intersections in this research, and select final variable through correlation analysis of abstracted estimation elements. Developed intersection design model taking advantage of signal type, numeric of lane, intersection type, analysis of variance techniques through ANOVA analysis of three variables of intersection form with selected variable lastly, in signal crossing through three class intersection, distinction variable choice risk in model, no-signal crossing risk distinction analysis model and so on develop.

  • PDF

A Feasibility Study on Developing Snow Melting Systems using CNT-Cement Composite (도로 융설체 개발을 위한 탄소나노튜브-시멘트 복합체 특성에 관한 실험적 연구)

  • Heo, Jinnyung;Park, Bumjin;Kim, Taehyeong
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.29-37
    • /
    • 2013
  • PURPOSES : This study aims to review the possibility of developing a road snow-melting system that can prevent slip accidents by maintaining a constant temperature of the winter roads and enhance performance of structures, including improvement of compressive strength by mixing carbon nanotube (hereafter referred to as CNT) with cement paste, the basic material. METHODS : To achieve the above purpose, an experiment was conducted by mixing power-type CNT and wrap-type CNT up to cement paste formulation by weight of 0.0wt%~4.1wt% in accordance with "KS L ISO 679(of cement strength test method)", and compressive strength was measured at 28 days of curing. In addition, the volume resistivity of the specimen was measured to test thermal and electrical characteristics, and the rate of temperature changes in specimen surface by power consumption was measured by passing electricity through the cross-sections of the specimen. Meanwhile, the criteria for checking the performance as a road snow-melting system was determined as volume resistivity of $100{\Omega}{\cdot}cm$ or less. RESULTS : A comparative analysis between specimen with 0wt% CNT content in plain status and specimen containing various types of CNTs was carried out. From its results, it was found that compressive strength increased approximately 19%, showing the highest rate when 0.2wt% of wrap-type CNT was contained, but volume resistivity of $100{\Omega}{\cdot}cm$ or less appeared only in specimens containing more than 0.2wt% CNT. In addition, it was observed that the surface temperature increased by $4.62^{\circ}C$ per minute on average in specimens containing 3.2wt% CNT. CONCLUSIONS : In this study, CNT was examined as an underlying material for a road snow-melting system, and the possibility of developing the road now-melting system was reviewed by conducting various experiments using CNT-Cement composites. From the experimental results, the specimens were found to have a superior performance when compared to the existing road snow-melting systems that place the heat transfer medium such as copper on the road. However, satisfactory strength performance were not obtained from the specimen containing CNT(2.0% or more) that functions as a heating element, which leads to the need for reviewing methods to increase the strength by using plasticizer or admixture.

A Study of the Analysis on the Accident Reduction Effect of the Median (중앙분리대의 사고감소효과 분석에 관한 연구)

  • 김경석;강승림
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.45-60
    • /
    • 2003
  • A median is a safety feature most commonly used to separate opposing traffic on a divided highway. In designing highways, the selection and installation of a median can be a critical part from a safety viewpoint because road crossing accidents are definitely more serious than other accidents. In regard to the important function of the median. the proper countermeasure ought to have been provided and thorough study should have been carried out. In this paper, traffic accident data are analyzed to examine the accident reduction effect of the median, which are gathered from all over 4-lane national roads in Korea. The traffic accident data were categorized into two groups by the existence of a median. For more effective analysis, the data have been classified by accident type, severity. and occurrence time. To compare the effectiveness of median installation, not only the accident frequency but also the accident severity, EPDO. and the occupancy rate of specific accidents have been used as a mode of effectiveness. The analysis of the effectiveness of medians shows that both the accident frequency and the accident severity could decrease by providing a median. Also the section where a median was supplied showed the improvement of overall safety through fewer serious and fatal crashes as well as fewer head-on crashes. Therefore, conclusions can be drawn from results of this study that the median installation is an important means to increase the safety of over 4-lane national roads. This study is expected to provide the reasonability of the median installation by identifying the reduction of traffic accident after the median installation and to play a major role in selecting sections where the median is to be offered.

Improvement of the HCM Delay Estimation Model for Exclusive Permitted Left Turns (비보호 좌회전 지체도 추정모형의 개선)

  • 김진태
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.107-118
    • /
    • 2003
  • Highway Capacity Manual (HCM) provides an analytical delay estimation model to assist the evaluation of traffic at a signalized intersection. The model revised and included in the HCM published in the year 2000 reflects the results of recent studies and is utilized in various fields of transportation studies. For the implementation of the model in the case of permitted left turns, the HCM supplement provides a computational procedure to adjust the saturation flow rate of permitted left toms. The model however, is originally designed for a protected movement and thus underestimates the delay of permitted left turns due to its difference right-of-way nature. This document describes (1) a review of the theoretical background of the HCM delay estimation model, (2) problems embedded in the model for the delay estimation of permitted left turns, (3) a proposed model developed in this study to improve the delay estimation for permitted left turns and (4) a set of verification tests. In order to reflect various traffic and control conditions in the test, simulation studies were performed to by using the field data based on 120 different permitted left-turn scenarios. Comparison studies conducted between sets of delays estimated by the HCM and the proposed models against a set of the CORSIM delays and showed that the proposed model improved the estimation of the permitted left-turn delays. The explanatory variable of the relationship between the HCM delay and the simulation delay was 0.47 and the one between the delay estimated by the proposed model and the simulation delay was 0.77.

A Case Study on the Traffic Operational Guidance for Temporary Closure of Climbing Lane; Focusing on Nakdong JC at Jungbunaeryuk Expressway (오르막차로 일시 폐쇄를 위한 교통운영기준 사례연구 (중부내륙고속도로 낙동JC를 중심으로))

  • Choi, Yoon-Hyuk;Lee, Seung-Jun;Bae, Young-Seok;Ko, Han-Geom
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.17-28
    • /
    • 2010
  • A climbing lane is installed to separate low-speed traffic from high-speed traffic if drastic traffic capacity reduction is expected due to a large number of vehicles that slow down in the upward section. Existing studies on climbing lanes have focused on the designation, location of starting and ending points, and installation method of climbing lane with regard to road design standards. However, in terms of traffic operation, it was known that the climbing lanes cause traffic congestion due to the increase of traffic volumes. In this regard, this study aims to establish traffic operational guidance as to how much effects temporary closure of climbing lanes can have on traffic improvement according to the volume-capacity ratio, grade, and composition of trucks. A test section of simulated climbing lane was selected in Nakdong JC bound for Masan(136.9K~133.3K, 3.6km, 3.7%) on Jungbunaeryuk expressway to conduct VISSIM analyses, microscopic traffic simulation based on such control variables as traffic volume(v/c), grade and the trucks ratio. As a result of the analyses, it has been found that v/c and the ratio of trucks are the key variables for efficient traffic management of climbing lanes in order to relieve traffic congestion via climbing lane. If ratio of trucks are more than 50% and when v/c would be 0.8, both climbing lane would be closed and non-operated regardless of grade and ratio of trucks when v/c is 1.0. With the increased traffic due to a five-day work week system, continued peak hours during the weekday, increased and various patterns of congestion on expressway, this study would be expected to contribute to facilitating researches on flexible operational standards for road facilities.

The Effects of Road Geometry on the Injury Severity of Expressway Traffic Accident Depending on Weather Conditions (도로기하구조가 기상상태에 따라 고속도로 교통사고 심각도에 미치는 영향 분석)

  • Park, Su Jin;Kho, Seung-Young;Park, Ho-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.12-28
    • /
    • 2019
  • Road geometry is one of the many factors that cause crashes, but the effect on traffic accident depends on weather conditions even under the same road geometry. This study identifies the variables affecting the crash severity by matching the highway accident data and weather data for 14 years from 2001 to 2014. A hierarchical ordered Logit model is used to reflect the effects of road geometry and weather condition interactions on crash severity, as well as the correlation between individual crashes in a region. Among the hierarchical models, we apply a random intercept model including interaction variables between road geometry and weather condition and a random coefficient model including regional weather characteristics as upper-level variables. As a result, it is confirmed that the effects of toll, ramp, downhill slope of 3% or more, and concrete barrier on the crash severity vary depending on weather conditions. It also shows that the combined effects of road geometry and weather conditions may not be linear depending on rainfall or snowfall levels. Finally, we suggest safety improvement measures based on the results of this study, which are expected to reduce the severity of traffic accidents in the future.

Safety Assessment of the Level of Safety Culture of National Critical Infrastructure Expressway Operating Organizations (국가핵심기반 고속도로 운영기관의 안전문화 수준진단에 관한 소고)

  • Seo, Jeong-soo;Cheung, Chong-soo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.636-645
    • /
    • 2022
  • Purpose: This study intends to suggest alternatives for improving the level of safety culture by measuring/analyzing safety culture targeting employees of national core-based highway operating organizations. Method: Using the 'Safety Awareness Level Diagnosis Tool' of the Korea Occupational Safety and Health Agency, 16 sub-factor measurement tools reflecting 4 safety culture areas and 4 safety culture activities were evaluated for a total of 144 items. were surveyed/analyzed by online questionnaire. Result: As for the results by safety culture area, "safe operation" was the highest, and "safe communication" was the lowest. As for the results of each safety culture activity, "safe execution (D)", which evaluates whether the plan was implemented, was high. The lowest level of safety culture is "Safety Improvement (A)" Conclusion: When establishing a company's safety and health management measures, the most important aspect of management is the level of safety culture. The ultimate goal is to improve the level of safety culture. In this study, it was possible to confirm the safety culture level of the national core-based expressway operating institution. In the future, we intend to conduct a study on how safety culture affects business continuity management system (BCMS).

A Research on Improving the Shape of Korean Road Signs to Enhance LiDAR Detection Performance (LiDAR 시인성 향상을 위한 국내 교통안전표지 형상개선에 대한 연구)

  • Ji yoon Kim;Jisoo Kim;Bum jin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.160-174
    • /
    • 2023
  • LiDAR plays a key role in autonomous vehicles, and to improve its visibility, it is necessary to improve its performance and the detection objects. Accordingly, this study proposes a shape for traffic safety signs that is advantageous for self-driving vehicles to recognize. Improvement plans are also proposed using a shape-recognition algorithm based on point cloud data collected through LiDAR sensors. For the experiment, a DBSCAN-based road-sign recognition and classification algorithm, which is commonly used in point cloud research, was developed, and a 32ch LiDAR was used in an actual road environment to conduct recognition performance tests for 5 types of road signs. As a result of the study, it was possible to detect a smaller number of point clouds with a regular triangle or rectangular shape that has vertical asymmetry than a square or circle. The results showed a high classification accuracy of 83% or more. In addition, when the size of the square mark was enlarged by 1.5 times, it was possible to classify it as a square despite an increase in the measurement distance. These results are expected to be used to improve dedicated roads and traffic safety facilities for sensors in the future autonomous driving era and to develop new facilities.

Revision of Repair Materials Performance Requirement for Concrete Structures (콘크리트 구조물 단면복구공사 보수재료 품질기준개선)

  • Lee, Il Keun;Kim, Ki Hwan;Kim, Hong Sam;Yun, Sung Hwan;Kim, Woo Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.9-20
    • /
    • 2023
  • For highway concrete structures, the deterioration of the structure is accelerated due to the increase in the use of deicing materials, and sectional repair work is being frequently carried out to restore performance. However, after the repair work, re-damage such as cracks, delamination, and poor bond performance is exhibited in the repaired sectional area. In this study, overseas repair material requirements were first analyzed, and present domestic requirements were improved repair material performance through field surveys of common concrete structures, laboratory experiments, and test construction on a disused concrete bridge. In addition, performancebased quality requirements were presented so that all materials that meet the required performance can be applied, and different test methods for each material were unified into concrete test methods for consistent test results analysis. The considered performance requirements were compression strength, bending strength, and bond strength for structural properties, and length change rate, crack resistance, thermal expansion coefficient, and elasticity coefficient were for dimensional behavior. For resistance to chloride penetration resistance and freeze-thaw resistance were presented as durability. The proposed requirements for concrete repair materials are expected to contribute to the improvement of the quality of concrete sectional repair work in Korea.

The Operation Analysis of Signalized Intersections Using ICU Method (ICU 방법을 활용한 신호교차로 운영분석)

  • Kim, Young Chan;Jeon, Jae Hyeon;Jeong, Young Je;Kim, Eun Jeoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.41-48
    • /
    • 2009
  • The capacity analysis of signalized intersection usually includes a HCM method used at home and abroad and a ICU method this study presents. The HCM method focuses on operation analysis measuring an intersection's delay in terms of given traffic volume, signal operation, and intersection structure data. This method includes planning and design analysis, but these analyses are complex due to being possible through repetitive operation analysis. However the ICU method is a powerful tool for planning and design analysis, because these are possible through brief traffic volume and geometry structure data and consider minimum green time. In this study, the authors studied the ICU method and compared the HCM and ICU by analyzing traffic volume scenarios. Also to consider effectiveness for application of the ICU method, the authors applied the ICU to capacity analysis of intersections on urban arterial for setting major intersection and effect analysis for changing crosswalk type, the number of lane, lane use and operation form of left turn. The result of the analyses shows that the ICU method can measure correct capacity of intersection consist of a broad road in urban area, and is effective for planning and design analysis. This study is expected that traffic experts can grasp correct intersection's capacity and carry out a proper planning or improvement by applying the ICU method to planning and design analysis.