• Title/Summary/Keyword: Highly porous membrane

Search Result 36, Processing Time 0.029 seconds

Evaluation of Time-Temperature Integrators (TTIs) with Microorganism- Entrapped Microbeads Produced Using Homogenization and SPG Membrane Emulsification Techniques

  • Mijanur Rahman, A.T.M.;Lee, Seung Ju;Jung, Seung Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2058-2071
    • /
    • 2015
  • A comparative study was conducted to evaluate precision and accuracy in controlling the temperature dependence of encapsulated microbial time-temperature integrators (TTIs) developed using two different emulsification techniques. Weissela cibaria CIFP 009 cells, immobilized within 2% Na-alginate gel microbeads using homogenization (5,000, 7,000, and 10,000 rpm) and Shirasu porous glass (SPG) membrane technologies (10 μm), were applied to microbial TTIs. The prepared micobeads were characterized with respect to their size, size distribution, shape and morphology, entrapment efficiency, and bead production yield. Additionally, fermentation process parameters including growth rate were investigated. The TTI responses (changes in pH and titratable acidity (TA)) were evaluated as a function of temperature (20℃, 25℃, and 30℃). In comparison with conventional methods, SPG membrane technology was able not only to produce highly uniform, small-sized beads with the narrowest size distribution, but also the bead production yield was found to be nearly 3.0 to 4.5 times higher. However, among the TTIs produced using the homogenization technique, poor linearity (R2) in terms of TA was observed for the 5,000 and 7,000 rpm treatments. Consequently, microbeads produced by the SPG membrane and by homogenization at 10,000 rpm were selected for adjusting the temperature dependence. The Ea values of TTIs containing 0.5, 1.0, and 1.5 g microbeads, prepared by SPG membrane and conventional methods, were estimated to be 86.0, 83.5, and 76.6 kJ/mol, and 85.5, 73.5, and 62.2 kJ/mol, respectively. Therefore, microbial TTIs developed using SPG membrane technology are much more efficient in controlling temperature dependence.

Growth of Endothelial Cells on Microfabricated Silicon Nitride Membranes for an In Vitro Model of the Blood-brain Barrier

  • Harris, Sarina G.;Shuler, Michael L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.246-251
    • /
    • 2003
  • The blood-brain barrier (BBB) is composed of the brain capillaries, which are lined by endothelial cells displaying extremely tight intercellular junctions. Several attempts at creating an in vitro model of the BBB have been met with moderate success as brain capillary endothelial cells lose their barrier properties when isolated in cell culture. This may be due to a lack of recreation of the in vivo endothelial cellular environment in these models, including nearly constant contact with astrocyte foot processes. This work is motivated by the hypothesis that growing endothelial cells on one side of an ultra-thin, highly porous membrane and differentiating astrocyte or astrogliomal cells on the opposite side will lead to a higher degree of interaction between the two cell types and therefore to an improved model. Here we describe our initial efforts towards testing this hypothesis including a procedure for membrane fabrication and methods for culturing endothelial cells on these membranes. We have fabricated a 1 $\mu\textrm{m}$ thick, 2.0 $\mu\textrm{m}$ pore size, and 55% porous membrane with a very narrow pore size distribution from low-stress silicon nitride (SiN) utilizing techniques from the microelectronics industry. We have developed a base, acid, autoclave routine that prepares the membranes for cell culture both by cleaning residual fabrication chemicals from the surface and by increasing the hydrophilicity of the membranes (confirmed by contact angle measurements). Gelatin, fibronectin, and a 50/50 mixture of the two proteins were evaluated as potential basement membrane protein treatments prior to membrane cell seeding. All three treatments support adequate attachment and growth on the membranes compared to the control.

D-space-controlled graphene oxide hybrid membrane-loaded SnO2 nanosheets for selective H2 detection

  • Jung, Ji-Won;Jang, Ji-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.376-380
    • /
    • 2021
  • The accurate detection of hydrogen gas molecules is considered to be important for industrial safety. However, the selective detection of the gas using semiconductive metal oxides (SMOs)-based sensors is challenging. Here, we describe the fabrication of H2 sensors in which a nanocellulose/graphene oxide (GO) hybrid membrane is attached to SnO2 nanosheets (NSs). One-dimensional (1D) nanocellulose fibrils are attached to the surface of GO NSs (GONC membrane) by mixing GO and nanocellulose in a solution. The as-prepared GONC membrane is employed as a sacrificial template for SnO2 NSs as well as a molecular sieving membrane for selective H2 filtration. The combination of GONC membrane and SnO2 NSs showed substantial selectivity to hydrogen gas (Rair / Rgas > 10 @ 0.8 % H2, 100 ℃) with noise level responses to interfering gases (H2S, CO, CH3COCH3, C2H5OH, and NO2). These remarkable sensing results are attributed mainly to the molecular sieving effect of the GONC membrane. These results can facilitate the development of a highly selective H2 detector using SMO sensors.

Development of a Micro-pressure Sensor with high-resisting Pressure for Military Applications (군수용 고내압을 가지는 마이크로 압력센서의 개발)

  • Shim, Joon-Hwan;Seo, Chang-Taeg;Lee, Jong-Hyun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1016-1021
    • /
    • 2005
  • A piezoresistive pressure sensor using a silicone rubber membrane has been fabricated on the selectively diffused (100)-oriented n/n+/n silicon substrates by a unique silicon micromachining technique using porous silicon ething. The width, length and thickness of the beam were 120${\mu}m$, 600${\mu}m$ and 7${\mu}m$, respectively and the thickness of the silicone rubber membrane was 40${\mu}m$. By the fusion of silicon beam and silicone rubber membrane, the mechanical strength of the pressure sensor could be highly improved due to smaller shear stress. The effectiveness of the sensor was confirmed through an experiment and FEM simulation in which the pressure sensor was characterized.

  • PDF

Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina

  • Kim, Byeol;Lee, Jin Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.349-352
    • /
    • 2014
  • Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i.e., meshed pore, was produced.

Efficient removal of radioactive waste from solution by two-dimensional activated carbon/Nano hydroxyapatite composites

  • El Said, Nessem;Kassem, Amany T.
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.327-334
    • /
    • 2018
  • The nano/micro composites with highly porous surface area have attracted of great interest, particularly the synthesis of porous and thin film sheets of high performance. In this paper, an easy method of cost-effective synthesis of thin film ceramic fiber membranes based on Hydroxyapatite, and activated carbon by turned into studied to be applied within the service-facilitated the transport of radioactive waste such as $^{90}Sr$, $^{137}Cs$ and $^{60}Co$) as activated product of radioisotopes from ETRR-2 research reactor and dissolved in 3M $HNO_3$, across a thin flat-sheet supported liquid membrane (TFSSLM). Radionuclides are transported from alkaline pH values. The presence of sodium salts in the aqueous media improves in $HNO_3$, the lowering of permeability because the initial $HNO_3$ concentration is improved. The study some parameters on the thin sheet ceramic supported liquid membrane. EDTA as stripping phase concentration, time of extraction and temperature were studied. The study of maximum permeability of radioisotopes for all parameters. The pertraction of a radioactive waste solution from nitrate medium were examined at the optimized conditions. Under the optimum experimental 98.6-99.9% of $^{90}Sr$, 79.65-80.3% of $^{137}Cs$ and $^{60}Co$ 45.5-55.5% in 90-110 min with were extracted in 10-30 min, respectively. The process of diffusion in liquid membranes is governed by the chemical diffusion process.

Recent Research Trends of Mixed Matrix Membranes for CO2 Separation (이산화탄소 분리용 혼합 매질 분리막 최신 연구 동향)

  • Chi, Won Seok;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.373-384
    • /
    • 2015
  • In the past few decades, polymeric membrane has played an important role in gas separation applications. For the separation of $CO_2$, one of greenhouse gases, high permselectivity, long-term stability and scale-up are needed. However, conventional polymeric membranes have shown a trade-off relation between permeability and selectivity while inorganic materials are highly permeable but expensive. Mixed matrix membranes (MMMs) combining the advantages of both polymeric and inorganic materials have become a possible breakthrough for the next-generation gas separation membranes. The MMMs could be either symmetric or asymmetric but the latter is more preferred to improve the permeance. Important factors influencing the MMM fabrication include homogeneous distribution of inorganic particles and good interfacial contact between inorganic filler and organic matrix. Recently, metal organic frameworks (MOFs) have received much attention as a new class of porous crystalline materials and a potential candidate for $CO_2$ separation. Zeolitic imidazolate frameworks (ZIFs), a sub-branch of MOFs, are the most widely used in MMMs due to small particle size and appropriate pore size for $CO_2$ separation. One of the major issues associated with the incorporation of porous particles in a polymeric membrane is to control the microstructure of the porous particle materials such as particle size, orientation, and boundary conditions etc. In this review, major challenges surrounding MMMs and the strategies to tackle these challenges are given in detail.

Effects of Solvent on the Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion (상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조에서의 용매의 효과)

  • Cho, Yu Song;Kim, Young Kyoung;Koo, Ja-Kyung;Park, Jong Soon
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • Porous poly(L-lactic acid)(PLLA) scaffold membranes were prepared via. phase separation process. Chloroform, dichloromethane and 1,4-dioxane were used as solvent and, ethyl alcohol was used as non-solvent. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. The scaffold membranes obtained from the casting solutions with chloroform and with dichloromethane showed similar morphologies. They showed sponge-like porous structure with the pore size in the range of $3-10{\mu}m$ and, their porosities were in 50-80% range. Using 1,4-dioxane as solvent, nano-fibrous scaffold membranes with porosities over 80% were fabricated. When the polymer content in the solution with 1,4-dioxane was lowered to 4%, highly porous, macroporous and nano-fibrous scaffold membranes were obtained. The size of the macropore was tens of the microns and the porosity was around 90%. These results indicate that the solvent has significant effect on the scaffold membrane structure and, that scaffold membranes with various structures can be fabricated through phase separation method by choosing solvent and by controlling polymer concentration in the casting solution.

Fabrication of a High Porous Polyethylene Membrane Using BET as a Novel Diluent (새로운 BET 희석제를 이용한 고다공성 폴리에틸렌 분리막 제조)

  • Cho, Inhyun;Lee, Soomi;Kim, Chang Keun
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.530-534
    • /
    • 2014
  • Polyethylene (PE) membranes having various porosities are used as microfilters and separators in lithium ion batteries. Membranes having a high porosity are required for use as separators in a large scale lithium ion secondary battery. In this study, BET was examined for use as a new nontoxic diluent for the fabrication of highly porous PE membranes by thermally induced phase separation process. It was confirmed that BET can be used as a new diluent for the fabrication of the PE membranes by exploring upper critical solution temperature type phase behavior of PE mixtures with BET. When the porosity of the membrane prepared from the PE/PO mixture was compared with that prepared from PE/BET mixture, the latter was about 1.8 times higher than the former.

Hydrogen-Permselective TiO$_2$2/SiO$_2$2 Membranes Formed by Chemical Vapor Deposition

  • Nam, Suk-Woo;Ha, Heung-Yong;Yoon, Sung-Pil;Jonghee Han;Lim, Tae-Hoon;Oh, In-Hwan;Seong- Ahn Hong
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.69-74
    • /
    • 2001
  • Films of TiO$_2$/SiO$_2$ were deposited on the inner surface of the porous glass support tubes by decomposition of tetraisopropyl titanate (TIPT) and tetraethyl orthosilicate (TEOS) at atmospheric pressure. Dense and hydrogen -permselective membranes were formed at 400-600$\^{C}$. The permeation rates of H$_2$ through the membrane at 600$\^{C}$ were 0.2-0.4 ㎤(STP)/min-㎠ atm and H$_2$:N$_2$permeation ratios were above 1000. The permeation properties of the membranes were investigated at various deposition temperatures and TIPT/TEOS concentrations. Decomposition of TIPT alone at temperatures above 400$\^{C}$ produced porous crystalline TiO$_2$ films and they were not H7-selective. Decomposition of TEOS produced H$_2$-permeable SiO$_2$ films at 400-600$\^{C}$ but film deposition rate was very low. Addition of TIFT to the TEOS stream significantly accelerated the deposition rate and produced highly H$_2$-selective films. Increasing the TIPT/TEOS concentration ratio increased the deposition rate. The TiO$_2$/SiO$_2$ membranes formed at 600 $\^{C}$ have the permeation properties comparable to those of SiO$_2$ membranes produced from TEOS.

  • PDF