Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.2.349

Effect of Aluminum Purity on the Pore Formation of Porous Anodic Alumina  

Kim, Byeol (Department of Chemistry, Sookmyung Women's University)
Lee, Jin Seok (Department of Chemistry, Sookmyung Women's University)
Publication Information
Abstract
Anodic alumina oxide (AAO), a self-ordered hexagonal array, has various applications in nanofabrication such as the fabrication of nanotemplates and other nanostructures. In order to obtain highly ordered porous alumina membranes, a two-step anodization or prepatterning of aluminum are mainly conducted with straight electric field. Electric field is the main driving force for pore growth during anodization. However, impurities in aluminum can disturb the direction of the electric field. To confirm this, we anodized two different aluminum foil samples with high purity (99.999%) and relatively low purity (99.8%), and compared the differences in the surface morphologies of the respective aluminum oxide membranes produced in different electric fields. Branched pores observed in porous alumina surface which was anodized in low-purity aluminum and the size; dimensions of the pores were found to be usually smaller than those obtained from high-purity aluminum. Moreover, anodization at high voltage proceeds to a significant level of conversion because of the high speed of the directional electric field. Consequently, anodic alumina membrane of a specific morphology, i.e., meshed pore, was produced.
Keywords
Porous anodic alumina; Impurities; Electric field; Branched pore; Meshed pore;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sulka, G. D.; Brzozka, A.; Zaraska, L.; Jasku a, M. Electrochim. Acta 2010, 55, 4368.   DOI
2 Ohgai, T.; Hoffer, X.; Fabian, A.; Gravier, L.; Ansermet, J.-P. J. Mater. Chem. 2003, 13, 2530.   DOI
3 Mondal, S. P.; Das, K.; Dhar, A.; Ray, S. K. Nanotechnology 2007, 18, 095606.   DOI
4 Lee, W.; Scholz, R.; Nielsch, K.; Gosele, U. Angew. Chem., Int. Ed. Engl. 2005, 44, 6050.   DOI   ScienceOn
5 Johansson, A.; Torndahl, T.; Ottosson, L. M.; Boman, M.; Carlsson, J.-O. Mater. Sci. Eng., C, Biomim. Mater. Sens. Syst. 2003, 23, 823.   DOI   ScienceOn
6 Elam, J. W.; Zinovev, A.; Han, C. Y.; Wang, H. H.; Welp, U.; Hryn, J. N.; Pellin, M. J. Thin Solid Films 2006, 515, 1664.   DOI
7 Gaponenko, V.; Molchan, I. S.; Tsyrkunov, D. A.; Maliarevich, G. K.; Aegerter, M.; Puetz, J.; Al-Dahoudi, N.; Misiewicz, J.; Kudrawiec, R.; Lambertini, V.; Li Pira, N.; Repetto, P. Microelectron. Eng. 2005, 81, 255.   DOI
8 Jian, X.; Xiaohe, L.; Yadong, L. Mater. Chem. Phys. 2004, 86,409.   DOI
9 Chen, P.; Chua, S. J.; Wang, Y. D.; Sander, M. D.; Fonsta, C. G. Appl. Phys. Lett. 2005, 87, 143111.   DOI
10 Lei, Y. et al. Progress in Materials Science 2007, 52, 465-539.   DOI   ScienceOn
11 Li, A. P.; Muller, F.; Birner, A.; Nielsch, K.; Gosele, U. J. Appl. Phys. 1998, 84, 6023.   DOI   ScienceOn
12 Zhang, F.; Liu, X.; Pan, C.; Zhul, J. Nanotechnology 2007, 18,345302.   DOI   ScienceOn
13 Masuda, H.; Yada, K.; Osaka, A. Jpn. J. Appl. Phys. 1998, 37,1340.   DOI
14 Chung, C.-K.; Liu, T. Y.; Chang, W. T. Microsyst Technol. 2010,16, 1451-1456.   DOI
15 Zhoua, F.; Baron-Wieche a, A.; Garcia-Vergarab, S. J.; Curionia, M.; Habazakic, H.; Skeldona, P.; Thompsona, G. E. Electrochimica Acta 2012, 59, 186-195.   DOI
16 Kashi, M. A.; Ramazani, A. J. Phys. D: Appl. Phys. 2005, 38, 2396-2399.   DOI
17 Masuda, H.; Hasegwa, F.; Ono, S. J. Electrochem. Soc. 1997, 144, L127.   DOI   ScienceOn
18 Masuda, H.; Fukuda, K. Science 1995, 268, 1466.   DOI   ScienceOn
19 Aerts, T.; Dimogerontakis, Th.; De Graeve, I.; Fransaer, J.; Tercyn, H. Surf. Coat. Technol. 2007, 201, 7310.   DOI
20 Montero-Moreno, J. M.; Sarret, M.; Muller, C. J. Electrochem. Soc. 2007, 154, C169.   DOI
21 Yu, Ch-U.; Hu, Ch-Ch.; Bai, A.; Yang, Y.-F. Surf. Coat. Technol. 2007, 201, 7259.   DOI
22 Bai, A.; Hu, Ch-Ch.; Yang, Y.-F.; Lin, Ch-Ch. Electrochim. Acta 2008, 53, 2258.   DOI   ScienceOn
23 Shih, T.-S.; Wei, P.-S.; Huang, Y.-S. Surf. Coat. Technol. 2008, 202, 3298.   DOI
24 Fernandez-Romero, L.; Montero-Moreno, J. M.; Pellicer, E.; Peiro, F.; Cornet, A.; Morante, J. R.; Sarret, M.; Muller, C. Mater. Chem. Phys. 2008, 111, 542.   DOI
25 Chen, C. C.; Chen, J. H.; Chao, C. G. Jpn. J. Appl. Phys. 2005,44(3), 1529.   DOI
26 Zaraska, L. et al. Electrochimica Acta 2010, 55, 4377-4386.   DOI
27 Jessensky, O.; Muller, F.; Gosele, U. Appl. Phys. Lett. 1998, 72,1173.   DOI   ScienceOn
28 Rauf, A.; Mehmood, M.; Rasheed, M. A.; Aslam, M. J. Solid State Electrochem. 2009, 13, 321-332.   DOI
29 St pniowski, W. J.; Zasada, D.; Bojar, Z. Surface & Coatings Technology 2011, 206, 1416-1422.   DOI
30 Lee, W.; Ji, R.; Gosele, U.; Nielsch, K. Nature Mater. 2006, 5,741-747.   DOI   ScienceOn
31 Lu, J. G.; Li, D.; Zhao, L.; Jiang, C. Nano Lett. 2010, 10, 2766-2771.   DOI
32 Lee, W.; Han, H.; Park, S.-J.; Jang, J. S.; Ryu, H.; Kim, K. J.; Baik, S. ACS Appl. Mater. Interfaces 2013, 5, 3441-3448.   DOI
33 Fratila-Apachitei, L. E.; Tichelaar, F. D.; Thompson, G. E.; Terryn, H.; Skeldon, P.; Duszczyk, J.; Katgerman, L. Electrochim. Acta 2004, 49, 3169.   DOI   ScienceOn
34 Mukhopadhyay, K.; Sharma, A. K. Surf. Coat. Technol. 1997, 92, 212.   DOI   ScienceOn
35 Montero-Moreno, J. M.; Belenguer, M.; Sarret, M.; Muller, C. M. Electrochim. Acta 2009, 54, 2529.   DOI
36 Sulka, G. D.; Zaraska, L.; St pniowski, W. J. In Encyclopedia of Nanoscience and Nanotechnology, 2nd ed.; Nalwa, H. S., Ed.; American Scientific Publishers: Valencia, 2011; Vol. 11, pp 261-349.
37 Friedman, A. L.; Brittain, D.; Menon, L. J. Chem. Phys. 2007,127, 154717.   DOI