Browse > Article
http://dx.doi.org/10.12989/mwt.2018.9.5.327

Efficient removal of radioactive waste from solution by two-dimensional activated carbon/Nano hydroxyapatite composites  

El Said, Nessem (Nuclear Fuel Chemistry Hot Labs. And Waste Management Center, Atomic Energy Authority)
Kassem, Amany T. (Nuclear Fuel Chemistry Hot Labs. And Waste Management Center, Atomic Energy Authority)
Publication Information
Membrane and Water Treatment / v.9, no.5, 2018 , pp. 327-334 More about this Journal
Abstract
The nano/micro composites with highly porous surface area have attracted of great interest, particularly the synthesis of porous and thin film sheets of high performance. In this paper, an easy method of cost-effective synthesis of thin film ceramic fiber membranes based on Hydroxyapatite, and activated carbon by turned into studied to be applied within the service-facilitated the transport of radioactive waste such as $^{90}Sr$, $^{137}Cs$ and $^{60}Co$) as activated product of radioisotopes from ETRR-2 research reactor and dissolved in 3M $HNO_3$, across a thin flat-sheet supported liquid membrane (TFSSLM). Radionuclides are transported from alkaline pH values. The presence of sodium salts in the aqueous media improves in $HNO_3$, the lowering of permeability because the initial $HNO_3$ concentration is improved. The study some parameters on the thin sheet ceramic supported liquid membrane. EDTA as stripping phase concentration, time of extraction and temperature were studied. The study of maximum permeability of radioisotopes for all parameters. The pertraction of a radioactive waste solution from nitrate medium were examined at the optimized conditions. Under the optimum experimental 98.6-99.9% of $^{90}Sr$, 79.65-80.3% of $^{137}Cs$ and $^{60}Co$ 45.5-55.5% in 90-110 min with were extracted in 10-30 min, respectively. The process of diffusion in liquid membranes is governed by the chemical diffusion process.
Keywords
radionuclides; nHydroxyapatite; nActivated Carbon; thin film supported liquid membrane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu, X., Zhao, B., Wang, L., Zhang, Z., Zhang, H., Zhao, X. and Guo, X. (2016), "Hydrophobic PVDF/graphene hybrid membrane for CO2 absorption in membrane contactor", J. Membr. Sci., 520, 120-129.   DOI
2 Yang, C.F. and Cussler, E.L. (2000), "Reactive dependent extraction of copper and nickel using hollow fibers", J. Membr. Sci., 166(2), 229-238.   DOI
3 Alguacil, F.J. and Alonso, M. (2004), "Transport of Au(CN)2-across a supported liquid membrane using mixtures of amine Primene JMT and phosphine oxide Cyanex 923", J. Hydrometallurgy, 74(1-2), 157-163.   DOI
4 Bukhar, N., Chaudry, M.A. and Mazhar, M. (2004), "Cobalt(II) transport through triethanolamine-cyclohexanone supported liquid membrane", J. Membr. Sci., 234(1-2), 157-165.   DOI
5 Castillo, E., Granados, M. and Cortina, J.L. (2002), "Liquidsupported membranes in chromium (VI) optical sensing: Transport modelling", Analytica Chimica Acta, 464(2), 197-208.   DOI
6 El-said, N., Ali, M.M.S. and Hamd, M.M. (2014), "Nanoapatite for Nanotechnology: Part (III) A novel process for the fabrication and Improvement of nanoporous apatites from synthetic hydroxyapatite (HAp) in vitro activated carbon", 7(1), 2278-5736.
7 Christensen, J.J., Lamb, J.D., Izatt, S.R., Starr, S.E., Weed, G.C., Astin, M.S., Slitt, B.D and Izatt, R.M. (1978), "Effect of anion type on rate of facilitated transport of cations across liquid membranes via neutral macrocyclic carriers", J. Am. Chem. Soc., 100(10), 3219-3220.   DOI
8 Danesi, P.R. Reichley-Vinger, L. and Rickert, P.G. (1987), "Lifetime of supported liquid membranes: The influence of interfacial properties, chemical composition and water transport on the long-term stabilities of the membranes", J. Membr. Sci. 31(2-3), 117-145.   DOI
9 Danesi, P.R., Horwitz, E.P., Vandegrift, G.F. and Chiarizia, R. (1981), "Mass transfer rate through liquid membranes: Interfacial chemical reactions and diffusion as simultaneous permeability controlling factors", Sep. Sci. Technol., 16(2), 201-211.   DOI
10 Efome, J.E., Baghbanzadeh, M., Rana, D., Matsuura, T. and Lan, C.Q. (2015), "Effects of super hydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation", Desalination, 373, 47-57.   DOI
11 Geist, A., Plucinski, P. and Nitsch, W. (2000), "Mass transfer kinetics of reactive multi-cation coextraction to bis (2-ethylhexyl) phosphoric acid", Solvent Extr. Ion Exch., 18(3), 493-515.   DOI
12 He, D.S., Ma, M. and Zham, Z. (2000), "Transport of cadmium ions through a liquid membrane containing amine extractants as carriers", J. Membr. Sci., 169(1), 53-59.   DOI
13 Ghadiri, M., Marjani, A. and Shirazian, S. (2017), "Development of a mechanistic model for prediction of $CO_2$ capture from gas mixtures by amine solutions in porous membranes", J. Environ. Sci. Pollut. Res., 24(16), 236.   DOI
14 Gopi, D., Ramya, S., Rajeswari, D., Surendiran, M. and Kavitha, L. (2014), "Development of strontium and magnesium substituted porous hydroxyapatite/poly (3, 4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells", Colloids Surf. B: Biointerfaces, 114, 234-240.   DOI
15 Harruddin, N., Saufi, S.M., Faizal, C.K.M., Mohammad, A.W., and Ming, H.N. (2017), "Supported liquid membrane using hybrid polyether sulfone/graphene flat sheet membrane for acetic acid removal", J. Phys. Sci., 28, 111.
16 Dong, G., Hou, J., Wang, J., Zhang, Y., Chen, V. and Liu, J. (2016), "Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes", J. Membr. Sci., 520, 860-868.   DOI
17 Kislik, V.S. and Eyal, A.M. (1996), "Hybrid liquid membrane (HLM) system in separation technologies", J. Membr. Sci., 111(2), 259-272.   DOI
18 Izatt, R.M., Roper, D.K., Bruening, R.L and Lamb, J.D. (1989), "Macrocycle-mediated cation transport using hollow fiber supported liquid membranes", J. Membr. Sci., 45(1-2), 73-84.   DOI
19 Juang, R.S., Kao, H.C. and Wu, W.H. (2004), "Analysis of liquid membrane extraction of binary Zn(II) and Cd(II) from chloride media with Aliquat 336 based on thermodynamic equilibrium models", J. Membr. Sci., 228(2), 169-177.   DOI
20 Kasai, A., Willershausen, B., Reichert, C., Rohrig, B., Smeets, R. and Schmidt, M. (2008), "Ability of nanocrystalline hydroxyapatite paste to promote human ligament cell proliferation", J. Oral Sci., 50(3), 279-285.   DOI
21 Kumar, A. Haddad, R., Alguacil, F. J. and Sastre, A.M. (2005), "Comparative performance of non-dispersive solvent extraction using a single module and the integrated membrane process with two hollow fiber contactors", J. Membr. Sci., 248(1-2), 1-14.   DOI
22 Kolev, S.D., Argiropoulos, G., Cattrall, R.W., Hamilton, I.C. and Paimin, R. (1997), "Mathematical modelling of membrane extraction of gold (III) from hydrochloric acid solutions", J. Membr. Sci., 137(1-2), 261-269.   DOI
23 Kool, J.B., Parker, J.C. and Van Genuchten, M.T. (1987), "Parameter estimation for unsaturated flow and transport models - A review", J. Hydrology, 91(3-4), 255-293.   DOI
24 Kouki, N., Tayeb, R. and Dhahbi, M. (2014), "A flat-sheet supported liquid membrane based on Aliquat(R) 336 as carrier for the removal of salicylic acid from aqueous solution", Desalination Water Treat., 52(25-27), 4745-4754.   DOI
25 Lin, S.H. and Juang, R.S. (2001), "Mass-transfer in hollow-fiber modules for extraction and back-extraction of copper (II) with LIX64N carriers", J. Membr. Sci., 188(2), 251-262   DOI
26 Sobieski, W. and Lipinski, S. (2017), "The analysis of the relations between porosity and tortuosity in granular beds", J. Technical Sci., 85.
27 Nawaz, R., Ali, K. and Arshad, M. (2015), "Recovery of mercury using a trioctylphosphine oxide-based supported liquid membrane system", Environ. Eng. Sci., 32(11), 948-959.   DOI
28 Noble, R.D. and Way, J.D. (1987), "Liquid membrane technology: An overview", Liquid Membranes: Theory and Applications, American Chemical Society, Washington, DC, U.S.A.
29 Park, M., Phuntsho, S., He, T., Nisola, G., Tijing, L., Li, X., Chen, G,. Chung, W. and Shon, H. (2015), "Graphene oxide incorporated polysulfide substrate for the fabrication of flatsheet thin-film composite forward osmosis membranes", J. Membr. Sci., 493, 496-507.   DOI
30 Safarpour, M., Khataee, A. and Vatanpour, V. (2015), "Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes", J. Sep. Purif. Technol., 140, 32-42.   DOI
31 Uheida, A., Zhang, Y. and Muhammed, M. (2004), "Transport of palladium (II) through hollow fiber supported liquid membrane facilitated by nonylthiourea", J. Membr. Sci., 241(2), 289-295.   DOI
32 Vakifahmetoglu, C. (2011), "Fabrication and properties of ceramic 1D nanostructures from preceramic polymers: A review", Adv. Appl. Ceramics: Struct., Funct. Bioceramics., 110(4),188-204.   DOI
33 Van de Voorde, I., Pinoy, L. and de Ketelaere, R.F. (2004), "Recovery of nickel ions by supported liquid membrana (SLM) extraction", J. Membr. Sci., 234(1-2), 11-21.   DOI
34 Wang, L., Paimin, R., Cattrall, R.W., Shen, W. and Kolev, S.D. (2000), "The extraction of cadmium (II) and copper (II) from hydrochloric acid solutions using an Aliquat 336/PVC membrane", J. Membr. Sci., 176(1), 105-111.   DOI
35 Woo, Y.C., Tijing, L., Shim, W.G., Choi, J.S., Kim, S.H., Drioli, E. and Shon, H.K. (2016), "Water desalination using graphene-enhanced electrospun nano fiber membrane via air gap membrane distillation", J. Membr. Sci., 520, 99-110.   DOI
36 Wodzki, R. and Sionkowski, G. (1995), "Recovery and concentration of metal ions. II Multimembrane hybrid system", Sep. Sci. Technol., 30(13), 2763-2778.   DOI