Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.373

Recent Research Trends of Mixed Matrix Membranes for CO2 Separation  

Chi, Won Seok (Department of Chemical and Biomolecular Engineering, Yonsei University)
Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Park, Min Su (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.25, no.5, 2015 , pp. 373-384 More about this Journal
Abstract
In the past few decades, polymeric membrane has played an important role in gas separation applications. For the separation of $CO_2$, one of greenhouse gases, high permselectivity, long-term stability and scale-up are needed. However, conventional polymeric membranes have shown a trade-off relation between permeability and selectivity while inorganic materials are highly permeable but expensive. Mixed matrix membranes (MMMs) combining the advantages of both polymeric and inorganic materials have become a possible breakthrough for the next-generation gas separation membranes. The MMMs could be either symmetric or asymmetric but the latter is more preferred to improve the permeance. Important factors influencing the MMM fabrication include homogeneous distribution of inorganic particles and good interfacial contact between inorganic filler and organic matrix. Recently, metal organic frameworks (MOFs) have received much attention as a new class of porous crystalline materials and a potential candidate for $CO_2$ separation. Zeolitic imidazolate frameworks (ZIFs), a sub-branch of MOFs, are the most widely used in MMMs due to small particle size and appropriate pore size for $CO_2$ separation. One of the major issues associated with the incorporation of porous particles in a polymeric membrane is to control the microstructure of the porous particle materials such as particle size, orientation, and boundary conditions etc. In this review, major challenges surrounding MMMs and the strategies to tackle these challenges are given in detail.
Keywords
mixed matrix membrane; carbon dioxide; metal organic frameworks; permeability; selectivity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Wessling, S. Schoeman, T. van den Boomgaard, and C. A. Smolders, "Plasticization of gas separation membranes", Gas Sep. Purif., 5, 222 (1991).   DOI
2 C. A. Scholes, S. Kentish, and G. Stevens, "Effects of minor components in carbon dioxide capture using polymeric gas separation membranes", Sep. Purif. Rev., 38, 1 (2009).   DOI
3 M. Al-Juaied and W. J. Koros, "Performance of natural gas membranes in the presence of heavy hydrocarbons", J. Membr. Sci., 274, 227 (2006).   DOI
4 C. C. Ahn, Y. Ye, B. V. Ratnakumar, C. Witham, J. R. C. Bowman, and B. Fultz, "Hydrogen desorption and adsorption measurements on graphite nanofibers", Appl. Phys. Lett., 73, 3378 (1998).   DOI
5 R. Ameloot, E. Gobechiya, H. Uji-i, J. A. Martens, J. Hofkens, L. Alaerts, B. F. Sels, and D. E. De Vos, "Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions", Adv. Mater., 22, 2685 (2010).   DOI
6 J. R. Johnson and W. J. Koros, "Utilization of nanoplatelets in organic-inorganic hybrid separation materials: Separation advantages and formation challenges", J. Taiwan Inst. Chem. Eng., 40, 268 (2009).   DOI
7 J. A. Sheffel and M. Tsapatsis, "A model for the performance of microporous mixed matrix membranes with oriented selective flakes", J. Membr. Sci., 295, 50 (2007).   DOI
8 J. Choi and M. Tsapatsis, "MCM-22/Silica selective flake nanocomposite membranes for hydrogen separations", J. Am. Chem. Soc., 132, 448 (2009).
9 S. Choi, J. Coronas, E. Jordan, W. Oh, S. Nair, F. Onorato, D. F. Shantz, and M. Tsapatsis, "Layered silicates by swelling of AMH-3 and nanocomposite membranes", Angew. Chem., Int. Ed., 47, 552 (2008).   DOI
10 C. Yang, W. H. Smyrl, and E. L. Cussler, "Flake alignment in composite coatings", J. Membr. Sci., 231, 1 (2004).   DOI
11 R. D. Noble, "Perspectives on mixed matrix membranes", J. Membr. Sci., 378, 393 (2011).   DOI
12 S. Xiong, S. Wang, X. Tang, and Z. Wang, "Four new metal-organic frameworks constructed from $H_2DBTDC-O_2$ ($H_2DBTDC-O_2$ = dibenzothiophene-5, 5'-dioxide-3,7-dicarboxylic acid) ligand with guest-responsive photoluminescence", Cryst. Eng. Comm., 13, 1646 (2011).   DOI
13 R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, T. C. Kobayashi, S. Horike, and M. Takata, "Guest shape-responsive fitting of porous coordination polymer with shrinkable framework", J. Am. Chem. Soc., 126, 14063 (2004).   DOI
14 N. B. Mckeown, P. M. Budd, K. J. Msayib, B. S. Ghanem, H. J. Kingston, C. E. Tattershall, S. Makhseed, K. J. Reynolds, and D. Fritsch, "Polymers of intrinsic microporosity (PIMs): Bridging the void between microporous and polymeric materials", Chem. -Eur. J., 11, 2610 (2005).   DOI
15 J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du, G. P. Robertson, and M. D. Guiver, "Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)", J. Membr. Sci., 346, 280 (2010).   DOI
16 P. Bernardo, E. Drioli, and G. Golemme, "Membrane gas separation: A review/state of the art", Ind. Eng. Chem. Res., 48, 4638 (2009).   DOI
17 R. W. Baker, "Future directions of membrane gas separation technology", Ind. Eng. Chem. Res., 41, 1393 (2002).   DOI
18 J. H. Kim, C. Y. Park, and Y. Lee, "Synthesis of soluble copolyimides using an alicyclic dianhydride and their $CO_2/CH_4$ separation properties", Membr. J., 24, 1 (2014).   DOI
19 K. S. Gi and K. T. Beom, "Separation of gases ($H_2$, $N_2$, $CO_2$, $CH_4$) by PEBAX-NaY zeolite composite membranes", Membr. J., 25, 27 (2015).   DOI
20 H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland, and I. Wright, "Progess in carbon dioxide separation and capture: A review", J. Environ. Sci., 20, 14 (2008).   DOI
21 J. M. Lee, M. G. Lee, S. J. Kim, H. C. Koh, and S. Y. Nam, "Characterization of gas permeation properties of polyimide copolymer membranes", Membr. J., 25, 223 (2015).   DOI
22 L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008).   DOI
23 Y. K. Kim, J. M. Lee, H. B. Park, and Y. M. Lee, "The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups", J. Membr. Sci., 235, 139 (2004).   DOI
24 A. Singh-Ghosal and W. J. Koros, "Air separation properties of flat sheet homogeneous pyrolytic carbon membranes", J. Membr. Sci., 174, 177 (2000).   DOI
25 A. B. Fuertes and T. A. Centeno, "Preparation of supported asymmetric carbon molecular sieve membranes", J. Membr. Sci., 144, 105 (1998).   DOI
26 A. B. Fuertes and T. A. Centeno, "Preparation of supported carbon molecular sieve membranes", Carbon, 37, 679 (1999).   DOI
27 H. B. Park, Y. K. Kim, J. M. Lee, S. Y. Lee, and Y. M. Lee, "Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes", J. Membr. Sci., 229, 117 (2004).   DOI
28 P. S. Tin, T.-S. Chung, S. Kawi, and M. D. Guiver, "Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides", Micropor. Mesopor. Mater., 73, 151 (2004).   DOI
29 R. M. de Vos and H. Verweij, "High-selectivity, high-flux silica membranes for gas separation", Science, 279, 1710 (1998).   DOI
30 J. Caro, M. Noack, P. Kolsch, and R. Schafer, "Zeolite membranes-state of their development and perspective", Micropor. Mesopor. Mater., 38, 3 (2000).   DOI
31 D. Q. Vu, W. J. Koros, and S. J. Miller, "Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results", J. Membr. Sci., 211, 311 (2003).   DOI
32 M. J. C. Ordonez, K. J. Balkus Jr, J. P. Ferraris, and I. H. Musselman, "Molecular sieving realized with ZIF-8/$Matrimid^{(R)}$ mixed-matrix membranes", J. Membr. Sci., 361, 28 (2010).   DOI
33 D. Q. Vu, W. J. Koros, and S. J. Miller, "Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior", J. Membr. Sci., 211, 335 (2003).   DOI
34 H. Vinh-Thang and S. Kaliaguine, "Predictive models for mixed-matrix membrane performance: A review", Chem. Rev., 113, 4980 (2013).   DOI
35 P. S. Goh, A. F. Ismail, S. M. Sanip, B. C. Ng, and M. Aziz, "Recent advances of inorganic fillers in mixed matrix membrane for gas separation", Sep. Purif. Technol., 81, 243 (2011).   DOI
36 M. L. Lind, A. K. Ghosh, A. Jawor, X. Huang, W. Hou, Y. Yang, and E. M. V. Hoek, "Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes", Langmuir, 25, 10139 (2009).   DOI
37 I. Pinnau and W. J. Koros, "Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion", J. Appl. Polym. Sci., 43, 1491 (1991).   DOI
38 R. Mahajan, R. Burns, M. Schaeffer, and W. J. Koros, "Challenges in forming successful mixed matrix membranes with rigid polymeric materials", J. Appl. Polym. Sci., 86, 881 (2002).   DOI
39 B.-H. Jeong, E. M. V. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A. K. Ghosh, and A. Jawor, "Challenges in forming successful mixed matrix membranes with rigid polymeric materials", J. Membr. Sci., 294, 1 (2007).   DOI
40 M. A. Aroon, A. F. Ismail, T. Matsuura, and M. M. Montazer-Rahmati, "Performance studies of mixed matrix membranes for gas separation: A review", Sep. Purif. Technol., 75, 229 (2010).   DOI
41 T.-S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007).   DOI
42 R. Mahajan and W. J. Koros, "Factors controlling successful formation of mixed-matrix gas separation materials", Ind. Eng. Chem. Res., 39, 2692 (2000).   DOI
43 L. Y. Jiang, T. S. Chung, C. Cao, Z. Huang, and S. Kulprathipanja, "Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes", J. Membr. Sci., 252, 89 (2005).   DOI
44 T. D. Kusworo, A. F. Ismail, A. Mustafa, and T. Matsuura, "Dependence of membrane morphology and performance on preparation conditions: The shear rate effect in membrane casting", Sep. Purif. Technol., 61, 249 (2008).   DOI
45 M. Das, J. D. Perry, and W. J. Koros, "Gas- transport- property performance of hybrid carbon molecular sieve-polymer materials", Ind. Eng. Chem. Res., 49, 9310 (2010).   DOI
46 M.-D. Jia, K.-V. Pleinemann, and R.-D. Behling, "Preparation and characterization of thin-film zeolite- PDMS composite membranes", J. Membr. Sci., 73, 119 (1992).   DOI
47 T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, and A. J. Hill, "Ultrapermeable, reverse-selective nanocomposite membranes", Science, 296, 519 (2002).   DOI
48 S. Husain and W. J. Koros, "Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation", J. Membr. Sci., 288, 195 (2007).   DOI
49 C. Kong, T. Shintani, and T. Tsuru, "Pre-seeding assisted synthesis of a high performance polyamide- zeolite nanocomposite membrane for water purification", New J. Chem., 34, 2101 (2010).   DOI
50 A. Car, C. Stropnik, and K.-V. Peinemann, "Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation", Desalination, 200, 424 (2006).   DOI
51 J. M. Duval, B. Folkers, M. H. V. Mulder, G. Desgrandchamps, and C. A. Smolders, "Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents", J. Membr. Sci., 80, 189 (1993).   DOI
52 B. D. Reid, F. A. Ruiz-Trevino, I. H. Musselman, K. J. Balkus, and J. P. Ferraris, "Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41", Chem. Mater., 13, 2366 (2001).   DOI
53 B. Zornoza, C. Tellez, and J. Coronas, "Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation", J. Membr. Sci., 368, 100 (2011).   DOI
54 Y. Zhang, I. H. Musselman, J. P. Ferraris, and K. J. Balkus, "Gas permeability properties of mixedmatrix matrimid membranes containing a carbon aerogel: A material with both micropores and mesopores", Ind. Eng. Chem. Res., 47, 2794 (2008).   DOI
55 Y. C. Hudiono, T. K. Carlisle, J. E. Bara, Y. Zhang, D. L. Gin, and R. D. Noble, "A three-component mixed-matrix membrane with enhanced $CO_2$ separation properties based on zeolites and ionic liquid materials", J. Membr. Sci., 350, 117 (2010).   DOI
56 Y. Li, H.-M. Guan, T.-S. Chung, and S. Kulprathipanja, "Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes", J. Membr. Sci., 275, 17 (2006).   DOI
57 M. Frycova, P. Sysel, M. Kocirik, L. Brabec, P. Hrabanek, O. Prokopova, B. Bernauer, and A. Zikanova, "Mixed matrix membranes based on 3-aminopropyltriethoxysilane endcapped polyimides and silicalite-1", J. Appl. Polym. Sci., 124, E233 (2012).   DOI
58 Y. Hudiono, S. Choi, S. Shu, W. J. Koros, M. Tsapatsis, and S. Nair, "Porous layered oxide/ $Nafion^{(R)}$ nanocomposite membranes for direct methanol fuel cell applications", Microporous Mesoporous Mater., 118, 427 (2009).   DOI
59 S. Basu, A. Cano-Odena, and I. F. J. Vankelecom, "Asymmetric $Matrimid^{(R)}$/[$Cu_3(BTC)_2$] mixed-matrix membranes for gas separations", J. Membr. Sci., 362, 478 (2010).   DOI
60 Y. Zhang, I. H. Musselman, J. P. Ferraris, and K. J. Balkus Jr, "Asymmetric $Matrimid^{(R)}$/[$Cu_3(BTC)_2$] mixed-matrix membranes for gas separations", J. Membr. Sci., 313, 170 (2008).   DOI
61 Y. Zhang, K. J. Balkus Jr, I. H. Musselman, and J. P. Ferraris, "Asymmetric $Matrimid^{(R)}$/[$Cu_3(BTC)_2$] mixed-matrix membranes for gas separations", J. Membr. Sci., 325, 28 (2008).   DOI
62 L. Pan, K. M. Adams, H. E. Hernandez, X. Wang, C. Zheng, Y. Hattori, and K. Kaneko, "Porous lanthanide- organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties", J. Am. Chem. Soc., 125, 3062 (2003).   DOI
63 Y. Li, T.-S. Chung, C. Cao, and S. Kulprathipanja, "Asymmetric $Matrimid^{(R)}$/[$Cu_3(BTC)_2$] mixed-matrix membranes for gas separations", J. Membr. Sci., 260, 45 (2005).   DOI
64 E. V. Perez, K. J. Balkus Jr, J. P. Ferraris, and I. H. Musselman, "Mixed-matrix membranes containing MOF-5 for gas separations", J. Membr. Sci., 165, 328 (2009).
65 S. Ma, D. Sun, X.-S. Wang, and H.-C. Zhou, "A mesh-adjustable molecular sieve for general use in gas separation", Angew. Chem. Int. Ed., 46, 2458 (2007).   DOI
66 D. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim, and K. Kim, "Microporous manganese formate: A simple metal-organic porous material with high framework stability and highly selective gas sorption properties", J. Am. Chem. Soc., 126, 32 (2003).
67 R. Adams, C. Carson, J. Ward, R. Tannenbaum, and W. Koros, "Metal organic framework mixed matrix membranes for gas separations", Micropor. Mesopor. Mater., 131, 13 (2010).   DOI
68 T. Yang, Y. Xiao, and T.-S. Chung, "Poly-/ metal- benzimidazole nano-composite membranes for hydrogen purification", Energy Environ. Sci., 4, 4171 (2011).   DOI
69 M. Z. Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R. Walter, and K. Friedrich, "Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites", Polymer, 42, 167 (2001).   DOI
70 M. Q. Zhang, M. Z. Rong, H. B. Zhang, and K. Friedrich, "Mechanical properties of low nano-silica filled high density polyethylene composites", Polym. Eng. Sci., 32, 490 (2003).
71 Q. Song, S. K. Nataraj, M. V. Roussenova, J. C. Tan, D. J. Hughes, W. Li, P. Bourgoin, M. A. Alam, A. K. Cheetham, S. A. Al-Muhtaseb, and E. Sivaniah, "Zeolite imidazolate frameswork (ZIF-8) based polymer nanocomposite membranes for gas separation", Energy Environ. Sci., 5, 8359 (2012).   DOI
72 O. G. Nik, X. Y. Chen, and S. Kaliaguine, "Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 379, 468 (2011).   DOI
73 O. G. Nik, X. Y. Chen, and S. Kaliaguine, "Functionalized metal organic framework-polyimide mixed matrix membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 413, 45 (2012).
74 A. Carne, C. Carbonell, I. Imaz, and D. Maspoch, "Nanoscale metal-organic materials", Chem. Soc. Rev., 40, 291 (2011).   DOI
75 M. Oh and C. A. Mirkin, "Chemically tailorable colloidal particles from infinite coordination polymers", Nature, 438, 651 (2005).   DOI
76 J. Cravillon, S. Munzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, and M. Wiebcke, "Rapid toom-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework", Chem. Mater., 21, 1410 (2009).   DOI
77 S. K. Nune, P. K. Thallapally, A. Dohnalkova, C. Wang, J. Liu, and G. J. Exarhos, "Synthesis and properties of nano zeolitic imidazolate frameworks", Chem. Commun., 46, 4878 (2010).   DOI
78 L. H. Wee, M. R. Lohe, N. Janssens, S. Kaskel, and J. A. Martens, "Fine tuning of the metal-organic framework $Cu_3(BTC)_2$ HKUST-1 crystal size in the 100 nm to 5 micron range", J. Mater. Chem., 22, 13742 (2012).   DOI
79 W. S. Chi, S. J. Kim, S. J. Lee, Y. S. Bae, and J. H. Kim, "Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach", Chem. Sus. Chem., 8, 650 (2015).   DOI
80 P. D. C. Dietzel, V. Besikiotis, and R. Blom, "Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide", J. Mater. Chem., 19, 7362 (2009).   DOI
81 M. Anson, J. Marchese, E. Garis, N. Ochoa, and C. Pagliero, "ABS copolymer-activated carbon mixed matrix membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 243, 19 (2004).   DOI
82 R. Mahajan and W. J. Koros, "Mixed matrix membrane materials with glassy polymers. Part 1", Polym. Eng. Sci., 42, 1420 (2002).   DOI
83 S. Li, J. L. Falconer, and R. D. Noble, "SAPO-34 membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 241, 121 (2004).   DOI
84 Z. Zhao, Z. Li, and Y. S. Lin, "Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5)", Ind. Eng. Chem. Res., 48, 10015 (2009).   DOI
85 Z. Huang, Y. Li, R. Wen, M. May Teoh, and S. Kulprathipanja, "Enhanced gas separation properties by using nanostructured PES-Zeolite 4A mixed matrix membranes", J. Appl. Polym. Sci., 101, 3800 (2006).   DOI
86 J. H. Kim and Y. M. Lee, "Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes", J. Membr. Sci., 193, 209 (2001).   DOI
87 Y. Li, T.-S. Chung, and S. Kulprathipanja, "Novel $Ag^+$-zeolite/polymer mixed matrix membranes with a high $CO_2/CH_4$ selectivity", AIChE J., 53, 610 (2007).   DOI
88 M. B. Rao and S. Sircar, "Nanoporous carbon membranes for separation of gas mixtures by selective surface flow", J. Membr. Sci., 85, 253 (1993).   DOI
89 M. B. Rao and S. Sircar, "Performance and pore characterization of nanoporous carbon membranes for gas separation", J. Membr. Sci., 110, 109 (1996).   DOI
90 H. Cong, M. Radosz, B. F. Towler, and Y. Shen, "Polymer-inorganic nanocomposite membranes for gas separation", Sep. Purif. Technol., 55, 281 (2007).   DOI
91 Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, and D. G. Vlachos, "Microstructural optimization of a zeolite membrane for organic vapor separation", Science, 300, 456 (2003).
92 A. F. Ismail and W. Lorna, "Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane", Sep. Purif. Technol., 27, 173 (2002).   DOI
93 G. Dong, H. Li, and V. Chen, "Plasticization mechanisms and effects of thermal annealing of Matrimid hollow fiber membranes for $CO_2$ removal", J. Membr. Sci., 369, 206 (2011).   DOI
94 A. Bos, I. G. M. Punt, and H. Strathmann, "Plasticization-resistant glassy polyimide membranes for $CO_2/CO_4$ separations", Sep. Purif. Technol., 14, 27 (1998).   DOI