• Title/Summary/Keyword: Higher order Mode

Search Result 494, Processing Time 0.029 seconds

SECOND-ORDER SLIDING-MODE CONTROL FOR A PRESSURIZED WATER NUCLEAR REACTOR CONSIDERING THE XENON CONCENTRATION FEEDBACK

  • ANSARIFAR, GHOLAM REZA;RAFIEI, MAESAM
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.94-101
    • /
    • 2015
  • This paper presents findings on the second-order sliding-mode controller for a nuclear research reactor. Sliding-mode controllers for nuclear reactors have been used for some time, but higher-order sliding-mode controllers have the added advantage of reduced chattering. The nonlinear model of Pakistan Research Reactor-1 has been used for higherorder sliding-mode controller design and performance evaluation. The reactor core is simulated based on point kinetics equations and one delayed neutron groups. The model assumes feedback from lumped fuel and coolant temperatures. The effect of xenon concentration is also considered. The employed method is easy to implement in practical applications, and the second-order sliding-mode control exhibits the desired dynamic properties during the entire output-tracking process. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability.

Dispersion Analysis of Higher-Order Modes for Planar Transmission Lines Using the 2-Dimensional Finite-Difference Time-Domain Method (2차원 유한차분-시간영역 방법을 이용한 평면형 전송선로의 고차 모드 분산 특성 해석)

  • 전중창;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.847-854
    • /
    • 1999
  • In this paper, we have analysed frequency-dispersion characteristics of higher-order modes for uniform planar transmission lines, using the 2-dimensional finite-difference time-domain method. The method presented in this paper uses both informations of amplitude and phase of the electromagnetic spectrum to determine resonant frequencies, while methods previously reported use the magnitude only. This algorithm is very useful when a resonant mode has a relatively small magnitude, where the identification of the resonant mode is quite difficult. Numerical results show that a strip line supports few higher-order modes within the frequency range of 20 GHz, but there occur many higher-order modes in the structure of grounded coplanar waveguide, where resonant frequencies of the first higher-order mode is very close to those of the fundamental mode and there occur lots of very adjacent higher-order modes. As in this example, for the analysis of planar transmission lines which support many resonant modes very close each other, the method presented in this paper can be applied very efficiently.

  • PDF

Higher Order Eigenfields in Mode II Cracks Under Elastic-Plastic Deformation

  • Insu Jeon;Lee, Yongwoo;Seyoung Im
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.254-268
    • /
    • 2003
  • The explicit formulation of the J-integral and the M-integral is constructed in terms of the stress intensity factor and the higher order stress coefficients for Mode II cracks under small or large scale yielding. Furthermore, the stress intensity factor and the higher order stress coefficients as well are computed with the aid of the two-state J- and the M-integral, which is found to be accurate and efficient. It is found that the contribution from the higher order singularities to the J-integral is closely related to the configuration of the plastic zone.

New Higher-Order Fixed-Interface Component Mode Synthesis by Applying a Field-Consistency Concept (장-일치 개념을 적용한 신 고차 구속 모드 합성법)

  • Kang, Jeong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.536-542
    • /
    • 2000
  • The present paper introduces a new fixed interface component mode synthesizing technique based on the notion of higher-order field-consistency. The present technique employs higher-order residual constraint modes in addition to lower fixed interface normal modes while consistency in matching field variables at the substructure interface is maintained. The present field-consistency approach does not increase the size of the synthesized system even if higher-order residual constraint modes are included. A new field-consistent higher-order synthesis technique is first presented and a numerical example is given to verify the present method.

  • PDF

Sliding Mode Controller Design Considering Weight (가중치를 고려한 슬라이딩 모드 제어기 설계)

  • 임동균;서병설
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.73-77
    • /
    • 1998
  • The conventional sliding mode controller (SMCr) approach is often impractical or difficult when applied to high order process because the number of tuning parameters in the SMCr increases with the order of the plant. Camacho(1996) proposed the design of a fixed structure sliding mode controller based on a first order plus dead time approximation to the higher-order process. But, there are such problems as overshoot, settling time and command following. They are mainly due to the approximation errors of the time delay term by Taylor series. In this paper, in order to improve Camcho's method, a new Taylor approximation technique considering a weight is proposed.

  • PDF

Higher Order Mode Analysis in Ferrite Waveguide Phase Shifter (페라이트 도파관 이상기내에서의 고차 모드 해석)

  • Lee, Byoong-Nam;Park, Dong-Chul;Yu, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.422-425
    • /
    • 1988
  • The structure consisting of an E-plane dielectric slab partially filling a rectangular waveguide is examined with attention on those higher order mode propagation characteristics that are relevant to the design of nonreciprocal remanence ferrite phase shifters. The mechanisms for the elimination of $LSE_{11}$, $LSM_{11}$, $LSE_{12}$ modes are introduced. Experimental verification of elimination of higher order mode is shown in the form of insertion loss measurements.

  • PDF

Time-Varying Sliding Mode Following Root Locus for Higher-Order Systems (고차 시스템을 위한 근궤적을 따르는 시변 슬라이딩 모드)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.379-384
    • /
    • 1999
  • In this paper, we present a new time-varying sliding surface to achieve fast and robust tracking of higher-order uncertain systems. The surface passes through an initial error, and afterwards, it moves towards a predetermined target surface by means of a variable named by sliding surface gain and its intercept. Specifically, the sliding surface gain is determined so that its initial value can minimize a shifting distance of the surface and that the system roots in sliding mode can follow certain stable trajectories. The designed sliding mode control forces the system errors to stay always on the proposed surface from the beginning. By this means, the system remains insensitive to system uncertainties and disturbances for the whole time. To illustrate the effectiveness of the proposed method, the comparative study with conventional time-invariant sliding mode control is performed.

  • PDF

Dynamic modeling and simulation of flexible robotic arms (유연한 로보트 팔의 동적 모델링과 시뮬레이션)

  • 김형옥;박세승;이정기;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.248-253
    • /
    • 1992
  • In the development of a high speed and light weight manipulator, it is necessary to consider the structural elasticity of a robotic arm. The analysis of the infinite mode dynamic of robotic arm must be performed to obtain the finite mode modelling to achieve the feasible controller design of the robotic arm. The modelling procedure of the robotic arm is also illustrated. The controlled mode of the modelled dynamic can be derived by truncating the higher vibrational mode to result in the low order system for the sampling in the control signal is confined to the higher mode. And it is controlled by the pole assignment which can compensate the unmodelled dynamic effects. The unmodelled dynamic can result in the instability of the controlled system, which is known as spillover. The controller design of the low order system is simulated by the pole assignment and optimal control theory.

  • PDF

An Investigation of Higher Order Modes in Widthwise in Parallel Plate Waveguide (평행평판 도파관에서 너비 방향으로 발생하는 고차 모드에 관한 연구)

  • Cho, Gyu-Yeong;Jo, Hyun-Dong;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.731-739
    • /
    • 2012
  • Transverse electric modes in parallel plate waveguide of which cut-off frequency is much lower than that of $TE_1$ and $TM_1$ mode generally known as the lowest higher order mode are investigated. Electric and magnetic field components of the modes are evaluated with the assumption that boundaries at both sides are perfect magnetic conductor. The existence of these modes are verified by simulation and experimental measurement of parallel plate waveguide cavity. Changed characteristics from the fact that the boundaries are imperfect are studied.

Data fusion based improved HOSM observer for smart structure control

  • Arunshankar, J.
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.257-266
    • /
    • 2019
  • The benefit of data fusion in improving the performance of Higher Order Sliding Mode (HOSM) observer is brought out in this paper. This improvement in the performance of HOSM observer, resulted in the improvement of active vibration control of a piezo actuated structure, when controlled by a Discrete Sliding Mode Controller (DSMC). The structure is embedded with two piezo sensors for measuring the first two vibrating modes. The fused output of sensors is applied to the HOSM observer for generating state estimates, these states generated are applied to the DSMC, designed for the fourth order linear time invariant model of the structure. In the simulation study, the structure is excited at the first and second mode resonance. It is found that better vibration suppression is obtained, when the states generated by the fused output of sensors is applied as controller input, than the vibration suppression obtained by applying the states generated by using individual sensor output. The closed loop performance of DSMC obtained with HOSM observer is compared with the closed loop performance obtained with the conventional observer. Results obtained shows that better vibration suppression is obtained when the states generated by HOSM observer is applied as controller input.