• Title/Summary/Keyword: Higher Order Boundary Element

Search Result 127, Processing Time 0.025 seconds

Higher Harmonic Generation by Nonlinear Interaction between Monochromatic Waves and a Horizontal Plate (규칙파와 수평판의 비선형 상호작용에 의한 고차 조화항 발생)

  • Koh, Hyeok-Jun;Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.484-491
    • /
    • 2007
  • Numerical experiments using a numerical wave tank have been performed to verier the nonlinear interaction between monochromatic waves and a submerged horizontal plate. As a model for numerical wave tank, we used a higher-order Boundary Element Method(BEM) based on fully nonlinear potential flow theory and CADMAS-SURF for solving Navier Stokes equations and exact free surface conditions. Both nonlinear models are able to predict the higher harmonic generation in the shallow water region over a submerged horizontal plate. CADMAS-SURF, which involves the viscous effect, can evaluate the higher harmonic generation by flow separation and vortices at the each ends of plate. The comparison of reflection and transmission coefficients with experimental results(Patarapanich and Cheong, 1989) at different lengths and submergence depths of a horizontal plate are presented with a good agreement. It is found that the transfer of energy from the incident fundamental waves to higher harmonics becomes larger as the submergence depth ratio decreases and the length ratio increases.

Natural Frequency Analysis of Cantilever Plates with Added Mass (부가수 질량을 고려한 외팔판의 고유진동 해석)

  • Jang, Hyun-Gil;Nho, In Sik;Hong, Chang-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The high-skewed and/or composite propellers of current interests to reduce the ship vibration and to increase the acoustic performance are likely to be exposed to the unexpected structural problems. One typical example is that the added mass effect on the propellers working in the non-uniform wake field reduces the natural frequency of the propeller leading to the resonance with the low-frequency excitation of the external forces. To avoid this resonance problem during the design stage, the technique of fluid-structure interaction has been developed, but the higher-order effect of the blade geometry deformation is not yet considered in evaluating the added mass effects. In this paper the fluid boundary-value problem is formulated by the potential-based panel method in the inviscid fluid region with the velocity inflow due to the body deformation, and the structural response of the solid body under the hydrodynamic loading is solved by applying the finite element method which implements the 20-node iso-parametric element model. The fluid-structure problem is solved iteratively. A basic fluid-sturcture interaction study is performed with the simple rectangular plates of thin thickness with various planform submerged in the water of infinite extent. The computations show good correlation with the experimental results of Linholm, et al. (1965).

Evaluation of Temper Embrittlement Effect and Segregation Behaviors on Ni-Mo-Cr High Strength Low Alloy RPV Steels with Changing P and Mn Contents (압력용기용 Ni-Mo-Cr계 고강도 저합금강의 P, Mn 함량에 따른 템퍼 취화거동 및 입계편석거동 평가)

  • Park, Sang Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.122-132
    • /
    • 2010
  • Higher strength and fracture toughness of reactor pressure vessel steels can be obtained by changing the material specification from that of Mn-Mo-Ni low alloy steel (SA508 Gr.3) to Ni-Mo-Cr low alloy steel (SA508 Gr.4N). However, the operation temperature of the reactor pressure vessel is more than $300^{\circ}C$ and the reactor operates for over 40 years. Therefore, we need to have phase stability in the high temperature range in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel. It is very important to evaluate the temper embrittlement phenomena of SA508 Gr.4N for an RPV application. In this study, we have performed a Charpy impact test and tensile test of SA508 Gr.4N low alloy steel with changing impurity element contents such as Mn and P. And also, the mechanical properties of these low alloy steels after longterm heat treatment ($450^{\circ}C$, 2000hr) are evaluated. Further, evaluation of the temper embrittlement by fracture analysis was carried out. Temper embrittlement occurs in KL4-Ref and KL4-P, which show a decrease of the elongation and a shifting of the transition curve toward high temperature. The reason for the temper embrittlement is the grain boundary segregation of the impurity element P and the alloying element Ni. However, KL4-Ref shows temper embrittlement phenomena despite the same contents of P and Ni compared with SC-KL4. This result may be caused by the Mn contents. In addition, the behavior of embrittlement is not largely affected by the formation of $M_3P$ phosphide or the coarsening of Cr carbides.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.

The effect of embedding a porous core on the free vibration behavior of laminated composite plates

  • Safaei, Babak
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.659-670
    • /
    • 2020
  • This paper proposes the use of a porous core between layers of laminated composite plates to examine its effect on the natural frequencies of the resulted porous laminated composite sandwich plate (PLCSP) resting on a two-parameter elastic foundation. Moreover, it has been suggested that the dispersion of porosity has two different functionally graded (FG) patterns which are compared with a uniformly dispersed (UD) profile to find their best vibrational efficiency in the proposed PLCSPs. In FG patterns, two types of dispersions, including symmetric (FG-S) and asymmetric (FG-A) patterns have been considered. To derive the governing Eigen value equation of such structures, the first order shear deformation theory (FSDT) of plates has been employed. Accordingly, a finite element method (FEM) is developed to solve the derived Eigen value equation. Using the mentioned theory and method, the effects of porosity parameters, fiber orientation of laminated composite, geometrical dimensions, boundary conditions and elastic foundation on the natural frequencies of the proposed PLCSPs have been studied. It is observed that embedding porosity in core layer leads to a significant improvement in the natural frequencies of PLCSPs. Moreover, the natural frequencies of PLCSPs with FG porous core are higher than those with UD porous core.

Hydrodynamic interaction with an array of porous circular cylinders

  • Park, Min-Su;Koo, Weon-Cheol;Choi, Yoon-Rak
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.146-154
    • /
    • 2010
  • In the present study, the wave excitation forces acting on an array of porous circular cylinders are examined based on diffraction problems. To calculate the wave forces, the fluid domain is divided into three regions i.e. a single exterior region, N interior regions and N beneath regions, and the diffraction in each fluid region is expressed by an eigenfunction expansion method with using 3-dimension liner potential theory (Williams and Li, 2000). Especially, the present method is extended to the case of an array of truncated porous circular cylinders to calculate the heave forces as well as surge and sway forces. To verify this method, the numerical results obtained by eigenfunction are compared with these results obtained by higher order boundary element method (Choi et al., 2000). The numerical results obtained by this study are in good agreement with those results. By changing the numbers of porous circular cylinders, the angle of incident wave and the porosity rate of circular cylinders, the wave excitation forces such as surge, sway and heave on an array of truncated porous circular cylinders are investigated.

Numerical Study on Wave-Induced Motion Response of Tension Leg Platform in Waves (모리슨 항력을 고려한 파랑 중 TLP 거동 특성 연구)

  • Cho, Yoon Sang;Nam, Bo Woo;Hong, Sa Young;Kim, Jin Ha;Kim, Hyun Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.508-516
    • /
    • 2014
  • A numerical method to investigate the non-linear motion characteristics of a TLP is established. A time domain simulation that includes the memory effect using the convolution integral is used to consider the transient effect of TLP motion. The hydrodynamic coefficients and wave force are calculated using a potential flow model based on the HOBEM(higher order boundary element method). The viscous drag force acting on the platform and tendons is also considered by using Morison’s drag. The results of the present numerical method are compared with experimental data. The focus is the nonlinear effect due to the viscous drag force on the TLP motion. The ringing, springing, and drift motion are due to the drag force based on Morison's formula.

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.

Numerical description of start-up viscoelastic plane Poiseuille flow

  • Park, Kwang-Sun;Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.47-58
    • /
    • 2009
  • We have investigated the transient behavior of 1D fully developed Poiseuille viscoelastic flow under finite pressure gradient described by the Oldroyd-B and Leonov constitutive equations. For analysis we employ a simple $2^{nd}$ order discretization scheme such as central difference for space and the Crank-Nicolson for time approximation. For the analysis of the Oldroyd-B model, we also apply the analytical solution, which is obtained again in this work in terms of elementary solution procedure simpler than the previous one (Waters and King, 1970). Both models demonstrate qualitatively similar solutions, but their eventual steady flowrate exhibits noticeable difference due to the absence or presence of shear thinning behavior. In the inertialess flow, the flowrate instantaneously attains a large value corresponding to the Newtonian creeping flow and then decreases to its steady value when the applied pressure gradient is low. However with finite liquid density the flow field shows severe fluctuation even accompanying reversals of flow directions. As the assigned pressure gradient increases, the flowrate achieves its steady value significantly higher than its value during oscillations after quite long period of time. We have also illustrated comparison between 1D and 2D results and possible mechanism of complex 2D flow rearrangement employing a previous solution of [mite element computation. In addition, we discuss some mathematical points regarding missing boundary conditions in 2D modeling due to the change of the type of differential equations when varying from inertialess to inertial flow.

Process Analysis of Elbow-shaped Tubes using a Mandrel (맨드렐을 이용한 엘보우 성형 공정해석)

  • Oh, I.Y.;Park, S.H.;Park, J.Y.;Lee, S.H.;Lee, E.Y.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • In this study, process analysis of elbow-shaped tubes using a mandrel has been performed. To reach the final shape within the dimensional tolerance, the process analysis has been performed at various processing parameters such as tube dimensions, the curved cutting surface and the radius of curvature. The area outside the boundary of the target shape was expressed as a quantitative index to analyze the formability. The validation experiments have also been performed in order to increase the reliability of the process analysis. For the processing of elbow-shaped tubes, it is preferable to make the angle of the portion where the punch touches the tube smaller than the opposite angle. And the convex cutting surface is advantageous due to the increased contacts between the punch and the tube ends during the bending process. Elbow tube having larger radius of curvature shows higher dimensional accuracy due to the relatively uniform strain distribution.