DOI QR코드

DOI QR Code

Evaluation of Temper Embrittlement Effect and Segregation Behaviors on Ni-Mo-Cr High Strength Low Alloy RPV Steels with Changing P and Mn Contents

압력용기용 Ni-Mo-Cr계 고강도 저합금강의 P, Mn 함량에 따른 템퍼 취화거동 및 입계편석거동 평가

  • 박상규 (한국과학기술원 신소재공학과) ;
  • 김민철 (한국원자력연구원 원자력재료연구부) ;
  • 이봉상 (한국원자력연구원 원자력재료연구부) ;
  • 위당문 (한국과학기술원 신소재공학과)
  • Received : 2009.10.07
  • Published : 2010.02.20

Abstract

Higher strength and fracture toughness of reactor pressure vessel steels can be obtained by changing the material specification from that of Mn-Mo-Ni low alloy steel (SA508 Gr.3) to Ni-Mo-Cr low alloy steel (SA508 Gr.4N). However, the operation temperature of the reactor pressure vessel is more than $300^{\circ}C$ and the reactor operates for over 40 years. Therefore, we need to have phase stability in the high temperature range in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel. It is very important to evaluate the temper embrittlement phenomena of SA508 Gr.4N for an RPV application. In this study, we have performed a Charpy impact test and tensile test of SA508 Gr.4N low alloy steel with changing impurity element contents such as Mn and P. And also, the mechanical properties of these low alloy steels after longterm heat treatment ($450^{\circ}C$, 2000hr) are evaluated. Further, evaluation of the temper embrittlement by fracture analysis was carried out. Temper embrittlement occurs in KL4-Ref and KL4-P, which show a decrease of the elongation and a shifting of the transition curve toward high temperature. The reason for the temper embrittlement is the grain boundary segregation of the impurity element P and the alloying element Ni. However, KL4-Ref shows temper embrittlement phenomena despite the same contents of P and Ni compared with SC-KL4. This result may be caused by the Mn contents. In addition, the behavior of embrittlement is not largely affected by the formation of $M_3P$ phosphide or the coarsening of Cr carbides.

Keywords

Acknowledgement

Grant : 고강도/고인성 원자로용기강 및 밀림관 스테인리스강 개발

Supported by : 지식경제부

References

  1. X. Z. Zhang and J. F. Knott, Acta Mater. 47, 3483 (1999) https://doi.org/10.1016/S1359-6454(99)00200-1
  2. Y. R. Im, Ph.D thesis, Seoul National University (2001)
  3. Y. R. Im, Y. J. Oh, B. J. Lee, J. H. Hong, and H. C. Lee, J. Nucl. Mater. 297, 138 (2001) https://doi.org/10.1016/S0022-3115(01)00610-9
  4. Y. S. Lee, M. C. Kim, B. S. Lee, and C. H. Lee, J. Kor. Inst. Met. Mater. 47, 139 (2009)
  5. A. Joshi and D. F. Stein, Temper Embrittlement of Alloy Steels, ASTM STP 499, 59 (1972)
  6. D. A. Woodford and R. W. Stepine, Metall. Trans. A 11A, 1951 (1980)
  7. S. Wignarajaj, I. Masumoto, and T. Hara, ISIJ Int. 30, 58 (1990) https://doi.org/10.2355/isijinternational.30.58
  8. M. P. Seah, Acta Mater. 25, 345 (1977) https://doi.org/10.1016/0001-6160(77)90153-5
  9. J. M. Titchmarsh, B. C. Edwards, G. Gage, and B. L. Eyre, Nature 278, 38 (1979) https://doi.org/10.1038/278038a0
  10. G. C. Gould, ASTM STP 407, 90 (1968)
  11. R. Viswanathan and T. P. Dherlock, Metall. Trans. 3, 459 (1972)
  12. H. Ohtani, H. C. Feng, C. J. McMahon, and R. A. Mulford, Metall. Trans. A 7A, 87 (1976)
  13. M. Guttmann, Surface Sci. 53, 213 (1975) https://doi.org/10.1016/0039-6028(75)90125-9
  14. S. G. Park, M. C. Kim, B. S. Lee, and D. M. Wee, J. Kor. Inst. Met. Mater. 46, 771 (2008)
  15. H. Arabi, S. Mirdamadi, and A. R. Abdolmaleki, ISIJ Int. 47, 1363 (2007) https://doi.org/10.2355/isijinternational.47.1363
  16. J. F. Smith, J. H. Reynolds, and H. N. Southworth, Acta Metall. 28, 1555 (1980) https://doi.org/10.1016/0001-6160(80)90057-7
  17. T. Wada and W. C. Hagel, Metall. Trans. A 7A, 1419 (1976)
  18. J. M. Titchmarsh, et al. Nature 28, 38 (1979)
  19. K. S. Shin and B. H. Tsao, Scripta Metall. 22, 585 (1988) https://doi.org/10.1016/S0036-9748(88)80164-9
  20. C. J. McMahon, E. Furubayashi, H. Ohtani, and H. C. Feng, Acta Metall. 24, 695 (1976) https://doi.org/10.1016/0001-6160(76)90090-0
  21. D. McLean, Grain boundaries in metals, Oxford Univ. Press (1957)