Browse > Article
http://dx.doi.org/10.12989/scs.2020.35.5.659

The effect of embedding a porous core on the free vibration behavior of laminated composite plates  

Safaei, Babak (Department of Mechanical Engineering, Eastern Mediterranean University)
Publication Information
Steel and Composite Structures / v.35, no.5, 2020 , pp. 659-670 More about this Journal
Abstract
This paper proposes the use of a porous core between layers of laminated composite plates to examine its effect on the natural frequencies of the resulted porous laminated composite sandwich plate (PLCSP) resting on a two-parameter elastic foundation. Moreover, it has been suggested that the dispersion of porosity has two different functionally graded (FG) patterns which are compared with a uniformly dispersed (UD) profile to find their best vibrational efficiency in the proposed PLCSPs. In FG patterns, two types of dispersions, including symmetric (FG-S) and asymmetric (FG-A) patterns have been considered. To derive the governing Eigen value equation of such structures, the first order shear deformation theory (FSDT) of plates has been employed. Accordingly, a finite element method (FEM) is developed to solve the derived Eigen value equation. Using the mentioned theory and method, the effects of porosity parameters, fiber orientation of laminated composite, geometrical dimensions, boundary conditions and elastic foundation on the natural frequencies of the proposed PLCSPs have been studied. It is observed that embedding porosity in core layer leads to a significant improvement in the natural frequencies of PLCSPs. Moreover, the natural frequencies of PLCSPs with FG porous core are higher than those with UD porous core.
Keywords
porous core; laminated composite; functionally graded; sandwich plate; free vibrations;
Citations & Related Records
Times Cited By KSCI : 20  (Citation Analysis)
연도 인용수 순위
1 Jabbari, M., Joubaneh, E.F., Khorshidvand, A.R. and Eslami, M.R. (2013), "Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression", Int. J. Mech. Sci., 70, 50-56. doi: 10.1016/j.ijmecsci.2013.01.031.   DOI
2 Jalali, M.H., Shahriari, B., Zargar, O., Baghani, M. and Baniassadi, M. (2018), "Free vibration analysis of rotating functionally graded annular disc of variable thickness using generalized differential quadrature method", Sci. Iran., 25(2), 728-740. doi: 10.24200/SCI.2017.4325.
3 Jalali, M.H., Zargar, O. and Baghani, M. (2018), "Size-dependent vibration analysis of FG microbeams in thermal environment based on modified couple stress theory", Iran. J. Sci. Technol. Trans. Mech. Eng. doi: 10.1007/s40997-018-0193-6.
4 Javed, S., Viswanathan, K.K., Izyan, M.D.N., Aziz, Z.A. and Lee, J.H. (2018), "Free vibration of cross-ply laminated plates based on higher-order shear deformation theory", Steel Compos. Struct., 26(4), 473-484. https://doi.org/10.12989/scs.2018.26.4.473.   DOI
5 Li, Q., Wu, D., Chen, X., Liu, L., Yu, Y. and Gao, W. (2018), "Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation", Int. J. Mech. Sci., 148, 596-610. doi: 10.1016/J.IJMECSCI.2018.09.020.   DOI
6 Li, Q., Xie, B., Sahmani, S. and Safaei, B. (2020), "Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction", J. Brazilian Soc. Mech. Sci. Eng., 42(5), 237. doi: 10.1007/s40430-020-02317-2.   DOI
7 Ghanati, P. and Safaei, B. (2019), "Elastic buckling analysis of polygonal thin sheets under compression", Indian J. Phys., 93(1), 47-52. doi: 10.1007/s12648-018-1254-9.   DOI
8 Qin, Z., Safaei, B., Pang, X. and Chu, F. (2019), "Traveling wave analysis of rotating functionally graded graphene platelet reinforced nanocomposite cylindrical shells with general boundary conditions", Results Phys., 15, 102752. doi: 10.1016/j.rinp.2019.102752.   DOI
9 Pourasghar, A. and Chen, Z. (2019d), "Nonlinear vibration and modal analysis of FG nanocomposite sandwich beams reinforced by aggregated CNTs", Polym. Eng. Sci., 59(7), 1362-1370. doi: 10.1002/pen.25119.   DOI
10 Qin, Z., Yang, Z., Zu, J. and Chu, F. (2018), "Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates", Int. J. Mech. Sci., 142-143, 127-139. doi: 10.1016/j.ijmecsci.2018.04.044.   DOI
11 Qin, Z., Zhao, S., Pang, X., Safaei, B. and Chu, F. (2020), "A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions", Int. J. Mech. Sci., 170, 105341. doi: https://doi.org/10.1016/j.ijmecsci.2019.105341.   DOI
12 Reddy, J.N. (2004), 'Mechanics of Laminated Composite Plates and Shells: Theory and Analysis'.
13 Safaei, B., Naseradinmousavi, P. and Rahmani, A. (2016), "Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression", J. Mol. Graph. Model., 65, 43-60. doi: 10.1016/j.jmgm.2016.02.001.   DOI
14 Safaei, B., Moradi-Dastjerdi, R. and Chu, F. (2018a), "Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations", Compos. Struct., 192, 28-37. doi: 10.1016/j.compstruct.2018.02.022.   DOI
15 Safaei, B., Fattahi, A.M. and Chu, F. (2018b), "Finite element study on elastic transition in platelet reinforced composites", Microsyst. Technol., 24(6), 2663-2671. doi: 10.1007/s00542-017-3651-y.   DOI
16 Yi, H., Sahmani, S. and Safaei, B. (2020), "On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions", Arch. Civ. Mech. Eng., 20(2), 48. doi: 10.1007/s43452-020-00047-9.   DOI
17 Xue, Y., Jin, G., Ma, X., Chen, H., Ye, T., Chen, M. and Zhang, Y. (2019), "Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach", Int. J. Mech. Sci., 152, 346-362. doi: 10.1016/j.ijmecsci.2019.01.004.   DOI
18 Yan, D.X., Ren, P.G., Pang, H., Fu, Q., Yang, M.B. and Li, Z.M. (2012) "Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite", J. Mater. Chem., 22(36), 18772-18774. doi: 10.1039/c2jm32692b.   DOI
19 Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. doi: 10.1016/J.COMPSTRUCT.2018.03.090.   DOI
20 Yang, X., Sahmani, S. and Safaei, B. (2020), "Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects", Eng. Comput., doi: 10.1007/s00366-019-00901-2.
21 Yu, T., Yin, S., Bui, T.Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin Wall. Struct., 101, 141-156. doi: 10.1016/j.tws.2015.12.008.   DOI
22 Yuan, Y., Zhao, K., Sahmani, S. and Safaei, B. (2020), "Size-dependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes", Appl. Math. Mech., 1-18. doi: 10.1007/s10483-020-2600-6.
23 Xu, K., Yuan, Y. and Li, M. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel Compos. Struct., 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633.   DOI
24 Mohammadi, M., Bamdad, M., Alambeigi, K., Dimitri, R. and Tornabene, F. (2019), "Electro-elastic response of cylindrical sandwich pressure vessels with porous core and piezoelectric face-sheets", Compos. Struct., 225, 111119. doi: 10.1016/J.COMPSTRUCT.2019.111119.   DOI
25 Liu, T., Wang, A., Wang, Q. and Qin, B. (2020), "Wave based method for free vibration characteristics of functionally graded cylindrical shells with arbitrary boundary conditions", Thin-Wall. Struct., 148. doi: 10.1016/j.tws.2019.106580.
26 Malekzadeh, P., Fiouz, A.R. and Razi, H. (2009), "Three-dimensional dynamic analysis of laminated composite plates subjected to moving load", Compos. Struct., 90(2), 105-114. doi: 10.1016/j.compstruct.2009.02.008.   DOI
27 Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solids Struct., 49(1), 43-53. doi: 10.1016/j.ijsolstr.2011.09.008.   DOI
28 Mohammadsalehi, M., Zargar, O. and Baghani, M. (2017), "Study of non-uniform viscoelastic nanoplates vibration based on nonlocal first-order shear deformation theory", Meccanica, 52, 1063-1077. doi: 10.1007/s11012-016-0432-0.   DOI
29 Moradi-Dastjerdi, R. and Behdinan, K. (2019), "Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene", Steel Compos. Struct., 31(5), 529-539. https://doi.org/10.12989/scs.2019.31.5.529.   DOI
30 Moradi-Dastjerdi, R., Payganeh, G., Rajabizadeh Mirakabad, S. and Jafari Mofrad Taheri, M. (2016), "Static and free vibration analyses of functionally graded nano- composite plates reinforced by wavy carbon nanotubes resting on a pasternak elastic foundation", Mech. Adv. Compos. Struct., 3, 123-135. doi: 10.22075/macs.2016.474.
31 Moradi-Dastjerdi, R. and Behdinan, K. (2020a), "Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers", Int. J. Mech. Sci., 167, 105283. doi: 10.1016/j.ijmecsci.2019.105283.   DOI
32 Safaei, B., Moradi-Dastjerdi, Rasool, Qin, Z., Behdinan, K. and Chu, F. (2019d), "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., doi: 10.1177/109963621984828. doi: 10.1177/1099636219848282.
33 Safaei, B., Moradi-Dastjerdi, Rasool, Qin, Z. and Chu, F. (2019a), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B Eng., 161, 44-54. doi: 10.1016/j.compositesb.2018.10.049.   DOI
34 Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019b), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. doi: 10.12989/anr.2019.7.4.265.   DOI
35 Safaei, B., Ahmed, N.A. and Fattahi, A.M. (2019c), "Free vibration analysis of polyethylene/CNT plates", Eur. Phys. J. Plus, 134, 271. doi: 10.1140/epjp/i2019-12650-x.   DOI
36 Safaei, B., Moradi-Dastjerdi, R., Behdinan, K. and Chu, F. (2019c) "Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers", Aerosp. Sci. Technol., 91, 175-185. doi: 10.1016/j.ast.2019.05.020.   DOI
37 Safaei, B., Moradi-Dastjerdi, R., Behdinan, K., Qin, Z. and Chu, F. (2019f), "Thermoelastic behavior of sandwich plates with porous polymeric core and CNT clusters/polymer nanocomposite layers", Compos. Struct., 226, 111209. doi: 10.1016/J.COMPSTRUCT.2019.111209.   DOI
38 Sciamanna, V., Nait-Ali, B. and Gonon, M. (2015), "Mechanical properties and thermal conductivity of porous alumina ceramics obtained from particle stabilized foams", Ceram. Int., 41(2), 2599-2606. doi: 10.1016/j.ceramint.2014.10.011.   DOI
39 Zargar, O., Mollaghaee-Roozbahani, M., Bashirpour, M. and Baghani, M. (2019), "The application of Homotopy Analysis Method to determine the thermal response of convective-radiative porous fins with temperature-dependent properties", Int. J. Appl. Mech., doi: 10.1142/s1758825119500881.
40 Sahmani, S. and Safaei, B. (2020), "Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams", Appl. Math. Model., 82, 336-358. doi: 10.1016/j.apm.2020.01.051.   DOI
41 Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019b), "Vibration behavior of the functionally graded porous ( FGP ) doubly-curved panels and shells of revolution by using a semi-analytical method", Compos. Part B, 157, 219-238. doi: 10.1016/j.compositesb.2018.08.087.   DOI
42 Zargar, O., Masoumi, A. and Moghaddam, A.O. (2017), "Investigation and optimization for the dynamical behaviour of the vehicle structure", Int. J. Automot. Mech. Eng., 14, 4196-4210. doi: 10.15282/ijame.14.2.2017.7.0336.   DOI
43 Zhang H., et al. (2020), "Study on vibro-acoustic property of composite laminated rotary plate-cavity system based on a simplified plate theory and experimental method",. Int. J. Mech. Sci., 167, 105264. DOI: 10.1016/j.ijmecsci.2019.105264.   DOI
44 Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019a), "Dynamics analysis of functionally graded porous ( FGP ) circular , annular and sector plates with general elastic restraints", Compos. Part B, 159, 20-43. doi: 10.1016/j.compositesb.2018.08.114.   DOI
45 Moradi-Dastjerdi, R. and Payganeh, G. (2018), "Thermoelastic Vibration Analysis of Functionally Graded Wavy Carbon Nanotube-Reinforced Cylinders", Polym. Compos., 39(S2), E826-E834. doi: 10.1002/pc.24278.   DOI
46 Moradi-Dastjerdi, R. and Behdinan, K. (2020b), "Temperature effect on free vibration response of a smart multifunctional sandwich plate", J. Sandw. Struct. Mater., DOI: 10.1177/1099636220908707. Available at: https://doi.org/10.1177/1099636220908707.
47 Moradi-Dastjerdi, R., Malek-Mohammadi, H. and Momeni-Khabisi, H. (2017), "Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates", ZAMM - J. Appl. Math. Mech. / Zeitschrift fur Angew. Math. und Mech., 97(11), 1418-1435. doi: 10.1002/zamm.201600209.
48 Moradi-Dastjerdi, R., Meguid, S.A. and Rashahmadi, S. (2019), "Electro-dynamic analysis of smart nanoclay-reinforced plates with integrated piezoelectric layers", Appl. Math. Model., 75, 267-278. doi: 10.1016/j.apm.2019.05.033.   DOI
49 Moradi-Dastjerdi, R. and Payganeh, G. (2017a), "Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads", Steel Compos. Struct., 25(3), 315-326. https://doi.org/10.12989/scs.2017.25.3.315.   DOI
50 Moradi-Dastjerdi, R. and Payganeh, G. (2017b), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions", Steel Compos. Struct., 24(3), 359-367. https://doi.org/10.12989/scs.2017.24.3.359.   DOI
51 Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2017), "Resonance in Functionally Graded Nanocomposite Cylinders Reinforced by Wavy Carbon Nanotube", Polym. Compos., 38, E542-E552. doi: 10.1002/pc.24045.   DOI
52 Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2018), "Thermoelastic Analysis of Functionally Graded Cylinders Reinforced by Wavy CNT Using a Mesh-Free Method", Polym. Compos., 39(7), 2190-2201. doi: 10.1002/pc.24183.   DOI
53 Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018) "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., 28(5), 629-639. doi: 10.12989/scs.2018.28.5.629.   DOI
54 Sehoul, M., Benguediab, M., Bakora, A. and Tounsi, A. (2017), "Free vibrations of laminated composite plates using a novel four variable refined plate theory", Steel Compos. Struct., 24(5), 603-613. https://doi.org/10.12989/scs.2017.24.5.603.   DOI
55 Setoodeh, A.R., Malekzadeh, P. and Nikbin, K. (2009), "Low velocity impact analysis of laminated composite plates using a 3D elasticity based layerwise FEM", Mater. Des., 30(9), 3795-3801. doi: 10.1016/j.matdes.2009.01.031.   DOI
56 Setoodeh, A.R., Shojaee, M. and Malekzadeh, P. (2019), "Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core", Compos. Part B Eng., 165, 798-822. doi: 10.1016/J.COMPOSITESB.2019.01.022.   DOI
57 Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. doi: https://doi.org/10.1016/j.compstruct.2011.01.020.   DOI
58 Askari, M., Saidi, A.R. and Rezaei, A.S. (2018), "An investigation over the effect of piezoelectricity and porosity distribution on natural frequencies of porous smart plates", J. Sandw. Struct. Mater., doi: 10.1177/1099636218791092.
59 Babaei, A., Noorani, M.R.S. and Ghanbari, A. (2017), "Temperature-dependent free vibration analysis of functionally graded micro-beams based on the modified couple stress theory", Microsyst. Technol., 23(10), 4599-4610. doi: 10.1007/s00542-017-3285-0.   DOI
60 Babaei, A. and Rahmani, A. (2018), "On dynamic-vibration analysis of temperature-dependent Timoshenko microbeam possessing mutable nonclassical length scale parameter", Mech. Adv. Mater. Struct., doi: 10.1080/15376494.2018.1516252.
61 Barati, M.R. and Zenkour, A.M. (2018), "Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions", J. Vib. Control, 24(10), 1910-1926. doi: 10.1177/1077546316672788.   DOI
62 Behdinan, K., Moradi-Dastjerdi, R., Safaei, B., Qin, Z., Chu, F. and Hui, D. (2020), "Graphene and CNT impact on heat transfer response of nanocomposite cylinders", Nanotechnol. Rev., 9, 41-52. Available at: https://doi.org/10.1515/ntrev-2020-0004.   DOI
63 Thai, H. and Choi, D. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. doi: 10.1016/j.compscitech.2011.08.016.   DOI
64 Studart, A.R., Gonzenbach, U.T., Tervoort, E. and Gauckler, L.J. (2006), "Processing routes to macroporous ceramics: A review", J. Am. Ceram. Soc., 1771-1789. doi: 10.1111/j.1551-2916.2006.01044.x.
65 Talebitooti, R., Daneshjoo, K. and Jafari, S.A.M. (2016), "Optimal control of laminated plate integrated with piezoelectric sensor and actuator considering TSDT and meshfree method", Eur. J. Mech. A/Solids, 55, 199-211. doi: 10.1016/j.euromechsol.2015.09.004.   DOI
66 Thai, C.H., Ferreira, A.J.M., Carrera, E. and Nguyen-Xuan, H. (2013), "Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory", Compos. Struct., 104, 196-214. doi: 10.1016/J.COMPSTRUCT.2013.04.002.   DOI
67 Bisheh, H.K. and Wu, N. (2018), "Wave propagation characteristics in a piezoelectric coupled laminated composite cylindrical shell by considering transverse shear effects and rotary inertia", Compos. Struct., 191, 123-144. doi: 10.1016/j.compstruct.2018.02.010.   DOI
68 Benhenni, M.A., Daouadji, T.H., Abbes, B., Abbes, F., Li, Y. and Adim, B. (2019), "Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions", Struct. Eng. Mech., 70(5), 535-549. doi: 10.12989/sem.2019.70.5.535.   DOI
69 Moradi-Dastjerdi, R., Radhi, A. and Behdinan, K. (2020c), "Damped dynamic behavior of an advanced piezoelectric sandwich plate", Compos. Struct., 112243. doi: 10.1016/j.compstruct.2020.112243.
70 Nguyen, N.V., Lee, J. and Nguyen-Xuan, H. (2019), "Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers", Compos. Part B Eng., 172, 769-784. doi: 10.1016/J.COMPOSITESB.2019.05.060.   DOI
71 Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin-Wall. Struct., 107, 39-48. doi: 10.1016/j.tws.2016.05.025.   DOI
72 Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. doi: 10.1016/j.ast.2018.03.020.   DOI
73 Deville, S. (2008), "Freeze-casting of porous ceramics: A review of current achievements and issues", Adv. Eng. Mater., 155-169. doi: 10.1002/adem.200700270.
74 Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion", Compos. Part B Eng., 145, 1-13. doi: 10.1016/j.compositesb.2018.03.009.   DOI
75 Fattahi, A.M., Safaei, B. and Moaddab, E. (2019a), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.   DOI
76 Fattahi, A.M., Safaei, B. and Ahmed, N.A. (2019b), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 555. doi: 10.1140/epjp/i2019-12912-7.   DOI
77 Pourasghar, A. and Chen, Z. (2019a), "Dual-phase-lag heat conduction in FG carbon nanotube reinforced polymer composites", Phys. B Condens. Matter, 564, 147-156. doi: 10.1016/j.physb.2019.03.038.   DOI
78 Nguyen, N.V, Nguyen, H.X., Lee, S. and Nguyen-xuan, H. (2018), "Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates", Adv. Eng. Softw., 126, 110-126. doi: 10.1016/j.advengsoft.2018.11.005.   DOI
79 Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams : Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B, 166, 310-327. doi: 10.1016/j.compositesb.2018.11.074.   DOI
80 Pourasghar, A., Moradi-Dastjerdi, R., Yas, M.H., Ghorbanpour Arani, A. and Kamarian, S. (2018), "Three-dimensional analysis of carbon nanotube- reinforced cylindrical shells with temperature- dependent properties under thermal environment", Polym. Compos., 39(4), 1161-1171. doi: 10.1002/pc.24046.   DOI
81 Pourasghar, A. and Chen, Z. (2019b), "Effect of hyperbolic heat conduction on the linear and nonlinear vibration of CNT reinforced size-dependent functionally graded microbeams", Int. J. Eng. Sci., 137, 57-72. doi: 10.1016/j.ijengsci.2019.02.002.   DOI
82 Pourasghar, A. and Chen, Z. (2019c) "Hyperbolic heat conduction and thermoelastic solution of functionally graded CNT reinforced cylindrical panel subjected to heat pulse", Int. J. Solids Struct., 163, 117-129. Available at: https://doi.org/10.1016/j.ijsolstr.2018.12.030.   DOI
83 Wu, X., Lu, C., Xu, H., Zhang, X. and Zhou, Z. (2014), "Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity", ACS Appl. Mater. Interfaces, 6(23), 21078-21085. doi: 10.1021/am505924z.   DOI
84 Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Reddy, J.N. (2017), "A posteriori stress and strain recovery procedure for the static analysis of laminated shells resting on nonlinear elastic foundation", Compos. Part B Eng., 126, 162-191. doi: 10.1016/J.COMPOSITESB.2017.06.012.   DOI
85 Tornabene, F., Viola, E. and Fantuzzi, N. (2013), "General higher-order equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels", Compos. Struct., 104, 94-117.   DOI
86 Vinson, J.R. (2001), "Sandwich Structures", Appl. Mech. Rev., 54(3), 201. doi: 10.1115/1.3097295.   DOI
87 Wang, Y.Q. (2014), "Nonlinear vibration of a rotating laminated composite circular cylindrical shell: Traveling wave vibration", Nonlinear Dyn., 77(4), 1693-1707. doi: 10.1007/s11071-014-1410-5.   DOI
88 Wang, Z., Yu, T., Bui, T.Q., Trinh, N.A., Luong, N.T.H., Duc, N.D. and Doan, D.H. (2016), "Numerical modeling of 3-D inclusions and voids by a novel adaptive XFEM", Adv. Eng. Softw., 102, 105-122. doi: 10.1016/j.advengsoft.2016.09.007.   DOI
89 Xiaohui, R., Zhen, W. and Bin, J. (2018), "A refined sinusoidal theory for laminated composite and sandwich plates", Mech. Adv. Mater. Struct. doi: 10.1080/15376494.2018.1538469.
90 Xie, B., Sahmani, S., Safaei, B. and Xu, B. (2020) "Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory", Eng. Comput., doi: 10.1007/s00366-019-00931-w.