This study addresses the evaluation on the satisfaction of school illumination quality by applying SERVPERF model after extracting factors affecting school illumination quality. Three types of illumination systems (fluorescence light, general LED light and high color rendition LED light) were tested by students who have used each illumination system. Three factors such as effectiveness, esthetic sense and function were developed for evaluation. Satisfaction evaluation was performed based on applied SERVPERF model by comparing perceived levels. The differences of perceived levels of satisfaction on the illumination systems were analyzed by ANOVA. The results said respondents satisfy only the high color rendition LED light regardless of three factors. Especially, students who experienced high color rendition LED light have strong intention to recommend that illumination system to other schools. They also express their desire to use that system at home. Interestingly, there is not much satisfaction difference between fluorescence light and general LED light.
수출용 온실 단지로 기대되는 간척지의 광환경은 해무 등에 의해 내륙과는 다른 광환경 특성을 나타낸다. 이러한 간척지에서 온실 설계 기준을 작성하기 위해서 산란광과 직달광을 고려한 온실 내 광분포 연구가 필요하다. 본 연구에서는 간척지의 고유의 광환경 특성을 분석하고 3-D 온실 모델에 적용하여 간척지의 온실 내 공간적인 광분포를 추정하고자 하였다. 먼저 간척지의 일사량을 산란광과 직달광으로 구분하여 측정하고 내륙의 일사량과 비교하였다. 또한 간척지 지역에 설치된 온실 내의 광분포를 측정하고 이를 시뮬레이션을 통해 계산된 값과 비교함으로써 3-D 온실 모델에 대한 검증을 실시하였다. 간척지는 내륙에 비하여 전체 일사량에 대비 높은 산란광의 비율을 나타내었으며, 특히 일출 및 일몰 부근에서 크게 나타났다. 3-D 온실 모델에 의한 온실 내 예측 광분포는 실제 간척지의 온실 내 광분포와 유사하게 나타났다. 검증된 3-D 온실 모델을 통하여 임의의 외부 광조건에 대하여 간척지 지역의 온실 내부의 시간적인 평균 광도의 변화와 광분포를 예측할 수 있었다. 이러한 결과는 간척지 지역의 온실 내 광환경 해석 이외에도 작물의 수광량 해석에도 유용하게 활용될 것으로 예상된다.
본 연구는 결측치 비율이 높은 시계열 데이터를 효과적으로 분석하고 예측할 수 있는 머신러닝 모델을 구축하기 위해 다양한 결측치 처리 방법을 비교 분석하였다. 이를 위해 PSMF(Predictive State Model Filtering), MissForest, IBFI(Imputation By Feature Importance) 방법을 적용하였으며, 이후 LightGBM, XGBoost, EBM(Explainable Boosting Machines) 머신러닝 모델을 사용하여 예측 성능을 평가하였다. 연구 결과, 결측치 처리 방법 중에서는 MissForest와 IBFI가 비선형적 데이터 패턴을 잘 반영하여 가장 높은 성능을 나타냈으며, 머신러닝 모델 중에서는 XGBoost와 EBM 모델이 LightGBM 모델보다 더 높은 성능을 보였다. 본 연구는 결측치 비율이 높은 시계열 데이터의 분석 및 예측에 있어 비선형적 결측치 처리 방법과 머신러닝 모델의 조합이 중요함을 강조하며, 실무적으로 유용한 방법론을 제시하였다.
This paper describes a vision-based method that effectively recognize a traffic light. The method consists of two steps of traffic light detection and discrimination. Many related studies have used color information to detect traffic light, but color information is not robust to the varying illumination environment. This paper proposes a new method of traffic light detection based on intensity and saturation. When a traffic light is turned on, the light region usually shows values with high saturation and high intensity. However, when the light region is oversaturated, the region shows values of low saturation and high intensity. So this study proposes a method to be able to detect a traffic light under these conditions. After detecting a traffic light, it estimates the size of the body region including the traffic light and extracts the body region. The body region is compared with five models which represent specific traffic signals, then the region is discriminated as one of the five models or rejected as none of them. Experimental results show the performance of traffic light detection reporting the precision of 97.2%, the recall of 95.8%, and correct recognition rate of 94.3%. These results shows that the proposed method is effective.
본 연구는 초고속 지능형 라인센터 개발에 관한 것으로서 1 차 년도 볼 스크류 방식의 시험모델에 대한 종합 검토 결과를 바탕으로 2 차 연도에는 리니어 모터를 채택한 라인센터의 시제품 설계에 있어서 고속화를 위한 방안을 모색하고 컴팩트한 경량의 구조를 지향하는 라인 센터 구조물을 설계하였고, 3 차 년도에는 라인센터의 제작 및 종합적인 시험 평가를 통하여 상품화 모델을 정립하고자 하였다.
최근 머신러닝 기반의 사이버 공격 탐지 및 분류 연구가 활발히 이루어지고 있으며, 높은 수준의 탐지 정확도를 달성하고 있다. 그러나 저 사양 IoT 기기, 대규모의 네트워크 트래픽 등은 IoT 환경에서 머신러닝 기반의 탐지모델 적용을 어렵게 하고 있다. 따라서 본 논문에서는 국방분야에서도 활용되고 있는 MQTT(Message Queuing Telementry Transport) IoT 프로토콜 환경에서 수집된 데이터세트를 대상으로, 차원축소 기법인 PCA(Principal Component Analysis)와 LightGBM(Light Gradient Boosting Model)을 이용하여 IoT 공격을 효울적으로 탐지 및 분류하는 방안을 제안하였다. 실험을 통해 제안하는 분류모델의 성능을 확인한 결과 원본 데이터세트를 약 15%로 축소하였음에도 원본 전체를 모두 사용한 모델과 거의 유사한 성능을 나타냈으며, 본 논문에서 선정한 4가지 차원축소기법과의 비교 평가에서도 가장 우수한 성능을 나타냈다.
A method of weight evaluation of the load-bearing structural elements of cars is presented and the weight ratio of the analysis model is investigated. Replacing the materials of floor elements of the car into the high-strength steel, a considerable weight-reduction of the model has been obtained. The 1500cc model is selected for the present study and the stick model analysis is employed for the structural analysis. The torsional stiffness of the weight-reduced model is also evaluated and it is shown it has a reasonable rigidity. The ratio of the weight of the load-bearing structural elements to the unladen vehicle weight of cars is about 0.12for the 1500cc model and the weight-reduction of this study can be obtained around 17% of the weight of the load-bearing structural elements.
고휘도 LED(Light-Emitting Diode)를 구현하기 위한 칩 설계의 최적화에 이용할 수 있는 SPICE 기반의 LED 3차원 회로 모델을 개발하였다. 본 모델은 LED를 일정한 면적의 픽셀로 구획하고, 각각의 픽셀은 n-전극, n-형 반도체, p-형 반도체, 및 p-전극 등의 일반적인 LED 레이어 구조를 반영하는 회로망으로 나타낸다. 개별의 박막 층과 접촉 저항은 저항 네트웍으로, pn-접합부는 일반적인 pn-접합 다이오드로 각각 모델링 한다. 별도의 테스트 패턴을 이용하여 독립적으로 추출한 파라미터를 이용한 시뮬레이션 결과는 실험 결과와 정확하게 일치함을 확인하였다.
LED조명의 강점을 토대로 LED조명이 보급되고 있으며, 다양한 정부정책이 시행되고 있다. 조명을 활용한 무선통신 기술인 VLC 연구가 활발히 이루어지고 있으며, 많은 연구를 통해서 고속 데이터 전송기와 같은 일반적인 LED 광원을 사용할 수 있다는 것이 증명되었다. 그러나 여전히 주요 문제 중 하나로 라디오 방송의 잡음과 유사한 빛의 간섭문제가 있다. 이에 본 논문에서는 스펙트럼 분리형 VLC 채널을 위한 광 필터를 사용하여 주변 조명의 간섭을 제거하기 위한 모델을 제안하였다. 제안한 모델의 검증을 위하여 다양한 고휘도 RGB LED 모듈을 활용하여 비교분석을 진행하였으며, 추가로 실생활에 적용되어 활용 중인 고휘도 LED 조명을 활용한 실험을 통한 적용성을 검증하였다.
본 논문에서는 사기 거래를 사전에 예방하고 XAI 접근 방식을 사용하여 해석할 수 있는 기계학습 모델을 제안한다. 실험을 위해 국내 주요 온라인 C2C 재판매 거래 플랫폼인 중고나라에서 휴대폰 판매 게시물 1만2,258개에 대한 실제 데이터셋을 수집했다. 게시물 본문에 해당하는 텍스트를 Doc2vec을 이용해 특성을 추출했고 PCA를 통해 차원축소를 했으며, 이전 연구를 바탕으로 다양한 파생변수가 만들어졌다. 전처리 단계에서 데이터 불균형 문제를 해결하기 위해 오버샘플링과 언더샘플링을 결합한 복합샘플링 방법이 적용되었다. 이러한 특성을 기반으로 사기성 게시물을 탐지하는 기계학습 모델들이 학습되었다. 분석 결과 LightGBM이 다른 기계학습 모델에 비해 가장 우수한 성능을 보였다. 그리고, SHAP을 이용한 분석 결과, 시세에 비해 터무니없게 가격이 쌀수록, 거래지역 표기가 없을수록, 가격이 높을수록, 안전거래를 하지 않을수록, 택배거래를 할수록, 가격 중 0의 비율이 많을수록 사기 게시글일 확률이 높았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.