• Title/Summary/Keyword: High-temperature High-pressure Vessel

Search Result 142, Processing Time 0.021 seconds

Manufacture of High-temperature High-pressure Vessel for Mixed Gas Performance Test via Optimized Design (최적화 설계를 통한 혼합가스 성능시험용 고온 고압 용기의 제작)

  • Ku, Hyoun-Kon;Ryu, Hyung-Min;Ahn, Jae-Woong;Bae, Young-Gwan;Kim, Jin-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.83-88
    • /
    • 2019
  • In this study, the high-temperature high-pressure vessel was successfully manufactured, which can be used to store pressurized air and to increase the temperature for the mix performance test of high-temperature high-pressure air with coolant (e.g., water). In this research, static structure analysis and transient thermal analysis were performed using the commercial software Midas NFX 2015 R1. Based on the results, the optimized pressure vessel design was carried out. As a result of the optimized design, the minimum stress and minimum weight were found at 120 mm of the vessel thickness, and the optimized pressure vessel was verified. Finally, through manufacture and performance test (e.g., the non-destructive inspection and hydraulic pressure test), the reliability and safety were validated for the designed pressure vessel.

Feasibility Study of Embedded FBG Sensors for the Smart Monitoring of High Pressure Composite Vessel (복합재 고압용기의 스마트 모니터링을 위한 FBG 센서의 삽입 적용성에 관한 연구)

  • Park, Sang-Wuk;Park, Sang-Oh;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.33-36
    • /
    • 2005
  • In this research, for the smart health monitoring of the hydrogen storage high pressure composite vessel, the feasibility study of an embedded fiber Bragg grating(FBG) sensor is carried out. To verify strain measurement in various temperature environment which is needed for the hydrogen pressure vessel, tensile test of a composite specimen with both an embedded FBG sensor and a strain gauge is made in low temperature. Before we try a real-size hydrogen storage pressure vessel, a small & cheap composite pressure vessel having the same structure is fabricated with embedded FBG sensors and tested. In the case of an aluminum liner inside the vessel, survivability of FBG sensors at the interface is lower than the other areas.

  • PDF

Design Characteristics Analysis for Very High Temperature Reactor Components (VHTR 초고온기기 설계특성 분석)

  • Kim, Yong Wan;Kim, Eung Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2016
  • The operating temperature of VHTR components is much higher than that of conventional PWR due to high core outlet temperature of VHTR. Material requirements and technical issues of VHTR reactor components which are mainly dominated by high temperature service condition were discussed. The codification effort for high temperature material and design methodology are explained. The design class for VHTR components are classified as class A or B according to the recent ASME high temperature reactor design code. A separation of thermal boundary and pressure boundary is used for VHTR components as an elevated design solution. Key design characteristics for reactor pressure vessel, control rod, reactor internals, graphite reflector, circulator and intermediate heat exchanger were analysed. Thermo-mechanical analysis of the process heat exchanger, which was manufactured for test, is presented as an analysis example.

A Study on HIGH TEMPERATURE FRACTURE TOUGHNESS of Pressure Vessel Steel SA516 at High Temperature. (압력용기용강의 고온파괴인성에 관한 연구)

  • 박경동;김정호
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.228-231
    • /
    • 2001
  • Elastic-plastic fracture toughness $J_{1c}$ can be used as an effective design criterion in elastic plastic fracture mechanics. Most of these systems are operated at high temperature and $J_{1c}$ values are affected by temperature. therefore, the $J_{1c}$ valuse at high temperature must be determined for use of integrity evaluation and designing of such systems. Elastic-plastic fracture toughness $J_{1c}$ tests were performed on SA516 carbon steel plate and test results were analyzed according to ASTM E 813-8, ASTM 1813-89. Safety and integrity are required for reactor pressure vessels vecause pthey are operated in high temperature. there are single specimen method, which used as evaluation of safety and integrity for reactor pressure vessels. In this study, elastic-plastic fracture toughness$(J_{1c})$ and $J-\Delta{a}$ of SA 516/70 steel used as reactor pressure vessel steel are measured and evaluated at room Temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ according to unloading compliance method.

  • PDF

A Numerical Analysis Study on the Reheating crack around Welded Joint of Pressure Vessel with 2$\frac {1}{4}$Cr-1Mo Steel (2$\frac {1}{4}$ Cr-1Mo강 압력용기 Nozzle 용접이음부의 재열균열에 관한 수치해석적 연구)

  • 김종명
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.88-94
    • /
    • 2000
  • Recently various pressure vessels like an atomic reactor and plant facilities become more larger and are needed to bear in both very high temperature and pressure condition. And in making such a high pressure vessels the amount of annual usage of 2 $\frac {1}{4}$ Cr-1Mo steels which are predominant to resist high temperature high pressure and corrosive circumstances are increasing. But despite of this advantage of 2 $\frac {1}{4}$Cr-1Mo steel. when PWHT(post welding heat treatment) is carried out lots of reheating cracks are occur. In this reason it is strongly needed to study and examine the mechanical behavior of welded joints through welding to PWHT process. So in this study welded nozzle of pressure vessel where reheat cracks are frequently occur are selected for analysis the crack-occurrence mechanism.

  • PDF

Evaluation on High Temperature Fracture toughness of Pressure Vessel SA516/70 Steel (압력용기용 SA516/70강의 고온파괴인성평가)

  • 박경동;김정호;윤한기;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.99-104
    • /
    • 2001
  • Elastic-plastic fracture toughness $J_{lc}$ can be used as an effective design criterion in elastic plastic fracture mechanics. Most of these systems are$J_{lc}$ $J_{lc}$ value at high temperature must be determined for use of integrity evaluation and designing of such systems. Elastic-plastic fracture toughness $J_{lc}$ tests were performed on SA516/70 carbon steel plate and test results were analyzed according to ASTM E 813-87, ASTM E 813-89 and ASTM E 1152-87.safety and integrity are required for reactor pressure vessels because, they are operated in high temperature. There are single specimen method, which used as evaluation of safety and integrity for reactor pressure vessels. In this study, elastic-plastic fracture toughness($J_{lc}$) and J-$\Delta$a of SA 516/70 steel used as reactor pressure vessel steel are measured and evaluated at room temperature, 150$^{\circ}C $, 250$^{\circ}C $ and 370$^{\circ}C $ according to unloading compliance method.

  • PDF

The Study on Sizing of the Pressure Relief Valve for Overpressure Protection of a Reactor Pressure Vessel in Low Temperature Condition (저온 상태의 원자로 압력용기의 과압방지를 위한 압력방출밸브 용량 결정에 관한 연구)

  • Lee, Jun;Kim, Yoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • The purpose of this study is to present a methodology to estimate the capacity of the pressure relief valve which prevents overpressure of the pressure vessel in a cold state. In this methodology, the transient behavior of the flow rate through the pressure relief valve and the pressure inside the pressure vessel are considered. The result of this study shows the followings; The more the relief valve capacity is considered in excess, the more the initial relief flow rate and the initial pressure inside the pressure vessel are high and low respectively. When the relief valve capacity is determined properly, the pressure inside the pressure vessel maintains almost the same value, so the ASME code requirement will be met.

  • PDF

ANALYSIS OF PRESTRESSED CONCRETE CONTAINMENT VESSEL (PCCV) UNDER SEVERE ACCIDENT LOADING

  • Noh, Sang-Hoon;Moon, Il-Hwan;Lee, Jong-Bo;Kim, Jong-Hak
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.77-86
    • /
    • 2008
  • This paper describes the nonlinear analyses of a 1:4 scale model of a prestressed concrete containment vessel (PCCV) using an axisymmetric model and a three-dimensional model. These two models are refined by comparison of the analysis results and with testing results. This paper is especially focused on the analysis of behavior under pressure and the temperature effects revealed using an axisymmetric model. The temperature-dependent degradation properties of concrete and steel are considered. Both geometric and material nonlinearities, including thermal effects, are also addressed in the analyses. The Menetrey and Willam (1995) concrete constitutive model with non-associated flow potential is adopted for this study. This study includes the results of the predicted thermal and mechanical behaviors of the PCCV subject to high temperature loading and internal pressure at the same time. To find the effect of high temperature accident conditions on the ultimate capacity of the liner plate, reinforcement, prestressing tendon and concrete, two kinds of analyses are performed: one for pressure only and the other for pressure with temperature. The results from the test on pressurization, analysis for pressure only, and analyses considering pressure with temperatures are compared with one another. The analysis results show that the temperature directly affects the behavior of the liner plate, but has little impact on the ultimate pressure capacity of the PCCV.

Computational Analysis for Improving Internal Flow of High Pressure Methanol Steam Reformer Pressure Vessel (고압형 메탄올 수증기 개질기 압력용기의 내부 유동 개선을 위한 전산 해석)

  • YU, DONGJIN;JI, HYUNJIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.411-418
    • /
    • 2020
  • A reformer is a device for producing hydrogen used in fuel cells. Among them, methanol steam reformer uses methanol as fuel, which is present as a liquid at room temperature. It has the advantage of low operating temperature, high energy density, and high hydrogen production. The purpose of this study is to improve the internal flow of the pressure vessel when a bundle of methanol steam reformer in the pressure vessel goes out to a single outlet. An analysis of equilibrium reaction to methanol steam reforming reaction was conducted using Aspen HYSYS® (Aspen Technology Inc., Bedford, USA), and based on the results, computational analysis was conducted using ANSYS Fluent® (ANSYS, Inc., Canonsburg, USA). For comparison of the results, the height of the pressure vessel, outlet diameter, and fillet was set as variables, and the optimum geometry was selected by comparing the effects of gravity and the amount of negative pressure.

High Temperature Tensile Stress Behavior of Hydrogen Vessel Composite Materials for Hydrogen Fuel Cell Bus (수소버스용 내압용기 복합재의 열적환경에 따른 기계적 물성 연구)

  • Hyunseok, Yang;Woo-Chul, Jung;Kwang Bok, Shin;Man-Sik, Kong
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.425-430
    • /
    • 2022
  • In this study, the mechanical properties of the pressure vessel composite exposed to the thermal environment were evaluated to establish the standard for high temperature static pressure test of the pressure vessel for hydrogen bus. As the tensile strength of the composite material approaches the glass transition temperature of the epoxy resin, the strength decreases due to the deterioration of the epoxy resin. In addition, it was confirmed that the tensile strength increased again due to the post-curing of the epoxy resin during long-term exposure. Therefore, the accelerated stress rupture test conditions of the pressure vessel for the hydrogen bus should be set based on the epoxy resin properties of the carbon fiber composite material.