• Title/Summary/Keyword: High-speed vehicle

Search Result 1,296, Processing Time 0.037 seconds

A Study on Behavioral Factors for the Safety of Ambulance Driving by Coefficiencial Structural Analysis (구급차 안전사고에 대한 공분산 구조분석)

  • Jo, Jeanman;Lee, Tae-Yong
    • The Korean Journal of Emergency Medical Services
    • /
    • v.4 no.1
    • /
    • pp.95-100
    • /
    • 2000
  • This is a study to evaluate the effects of the safety of ambulance driving and traffic accidents and to provide statistic information for the various factors to reduce the ambulance traffic accidents. The major instruments of this study were Korean Self-Analysis Driver Opinionnaire. This Questionnaire contains 8 items which measure drivers' opinions or attitudes: driving courtesy, emotion, traffic law, speed, vehicle condition, the use of drugs, high-risk behavior, human factors. The total of 145 divers were investigated ambulance drivers in Taejon City and others(6 City) from 2000. 5. July to 2000. 11. July. The data were analyzed by the path analysis - with SPSS and AMOS package program. The result are as follows : 1. It have suggested that risk factors of ambulance traffic accident much affected with emotion and speed control on safety ambulance driving(Y(Accident) = $0.88{\times}1$(Emotion Control) + $0.92{\times}2$(Speed) - $0.46{\times}3$(Traffic Law)+E). 2. It have suggested that risk factors of ambulance traffic accident much affected with emotion and speed control on safety ambulance driving(Y(Accident) = $0.398{\times}1$(Emotion Control) + $0.500{\times}2$(Speed) - $0.263{\times}3$(Traffic Law)+E) by coefficiecial structural analysis.

  • PDF

Maximum Torque Control of IPMSM Drive with ALM-FNN Controller (ALM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.110-114
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In this paper maximum torque control of IPMSM drive using artificial intelligent(AI) controller is proposed. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using adaptive learning mechanism fuzzy neural network(ALM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the experimental results to verify the effectiveness of AI controller.

Maximum Torque Control of IPMSM with Adaptive Learning Fuzzy-Neural Network (적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Lee, Jung-Ho;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.309-314
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current md voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using adaptive teaming fuzzy neural network and artificial neural network. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper proposes speed control of IPMSM using adaptive teaming fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive teaming fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive teaming fuzzy neural network and artificial neural network.

  • PDF

A Study on the Trolley Sliding Condition Inspection System

  • Chang, ChinYoung;Kim, ChanSam;Jung, NoGeon;Na, YeonIl;Kim, YangSu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.109-112
    • /
    • 2015
  • The Korean electric railway is growing rapidly such as speed of 300km/h in high speed section and 230km/h in the conventional railway section. But, power supply failure occurs because of loss of contact, defective catenary system and high speed vehicle. Therefore preventive maintenance way based reliability has been applied. Typical example is the facility inspection method using trolley inspection system. But it is required differentiated inspection method to prevent problem such as inspection errors. In this paper, a study on the trolley sliding condition inspection system using monitoring techniques is performed for performance enhancement of inspection system. It proposed the efficient maintenance method through monitoring the deviation and height of contact wire after installing inspection system on the top of train which operates in the metropolitan area. Inspection errors were decreased by virtually monitoring the video of faulty facilities. Also those facilities were identified through the impact sound analysis and tests at the main catenary section.

Fatigue Life Evaluation of Motor Block Bracket Units for KTX-Sancheon Trains (KTX-산천 열차용 모터 감속기 고정대의 피로 수명 평가)

  • Lee, Chan-Woo;Lee, Dong-Hyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.626-631
    • /
    • 2012
  • In this study, fatigue life of the motor block bracket units for KTX-Sancheon trains was assessed. Design evaluation for railway structures was performed based on the UIC 566 regulation, and test and evaluation of fatigue life in welded parts was performed in accordance with standard ERRI B 12/RP17 and ERRI B 12/RP60. The actual vehicle dynamic stress testing was executed in KTX-Sancheon service line with the service operating speed. The dynamic stress was measured with commercial data acquisition system (MGC plus). The cumulative damage was evaluated by applying standard BS 7608 - Class F and cycle counting was used rain-flow counting method. As a result, the motor block bracket units for KTX-Sancheon trains was designed to fit the regulation and the safety of fatigue life for 30 years, assuming that KTX-Sancheon trains travels 600,000km annually, were confirmed under current operating conditions.

A Study on electirc equipment measurement using sensors (센서를 이용한 전기장치 측정에 관한 연구)

  • Han, Young-Jae;Kim, Ki-Hwan;Park, Choon-Soo;Choi, Jong-Sun;Kim, Jung-Su
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.164-169
    • /
    • 2003
  • Recently, as the road capacity reaches the limit and environmental problems becomes serious, there is gradually increased a need for railroad vehicles that are environment-friendly and have time regularity, reliability and safety. Accordingly, in addition to conventional railroad vehicles, lots of vehicles are being newly developed. We developed the hardware and software of the measurement system for on-line test and evaluation of korean high speed train. The software controls the hardware of the mesurement data and acts as interface between users and the system hardware. In this paper, we is studied for electric apparatus performance of railway vehicle using sensor. In order to this test is developed signal conversion system. Using this system, we obtained important result for pantograph voltage, battery voltage, axle speed, and inverter current.

A high-speed complex multiplier based on redundant binary arithmetic (Redundant binary 연산을 이용한 고속 복소수 승산기)

  • 신경욱
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.2
    • /
    • pp.29-37
    • /
    • 1997
  • A new algorithm and parallel architecture for high-speed complex number multiplication is presented, and a prototype chip based on the proposed approach is designed. By employing redundant binary (RB) arithmetic, an N-bit complex number multiplication is simplified to two RB multiplications (i.e., an addition of N RB partial products), which are responsible for real and imaginary parts, respectively. Also, and efficient RB encoding scheme proposed in this paper enables to generate RB partial products without additional hardware and delay overheads compared with binary partial product generation. The proposed approach leads to a highly parallel architecture with regularity and modularity. As a results, it results in much simpler realization and higher performance than the classical method based on real multipliers and adders. As a test vehicle, a prototype 8-b complex number multiplier core has been fabricated using $0.8\mu\textrm{m}$ CMOS technology. It contains 11,500 transistors on the area of about $1.05 \times 1.34 textrm{mm}^2$. The functional and speed test results show that it can safely operate with 200 MHz clock at $V_{DD}=2.5 V$, and consumes about 90mW.

  • PDF

Cold Test and Internal Flow Analysis of Semi-Freejet Type High Altitude Environment Simulation Test Facility for the High-Speed Vehicle (초고속 비행체를 위한 준 자유흐름식 고공환경 모사시험설비의 상온시험 및 내부유동 해석)

  • Lee, Seongmin;Yu, Isang;Choi, Jiseon;Oh, Junghwa;Shin, Minkyu;Ko, Youngsung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.290-296
    • /
    • 2018
  • In this study, the cold test and the numerical analysis were carried out according to the shape parameters of the test model in order to confirm the operation range of high altitude environment simulation test facility for the supersonic vehicle. The blockage ratio, angle and length ratio were considered as the design parameters. The blockage rate is expected to be limited in the region of more than 40% due to the normal shock and expansion fan. It was confirmed that the angle of model should be selected at the size of 45 degrees or less due to the influence of the strong shock wave. There was no difference in performance between the lengths of 8 times the model diameter. Finally, we obtained the performance database according to the shape parameters of the conical test model and confirmed the operable range of the semi-freejet type high altitude environment simulation test facility.

Development of an Autonomous Vehicle: A1 (자율주행자동차 개발: A1)

  • Chu, Keon-Yup;Han, Jae-Hyun;Lee, Min-Chae;Kim, Dong-Chul;Jo, Ki-Chun;Oh, Dong-Eon;Yoon, E-Nae;Gwak, Myeong-Gi;Han, Kwang-Jin;Lee, Dong-Hwi;Choe, Byung-Do;Kim, Yang-Soo;Lee, Kang-Yoon;Huh, Kun-Soo;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.146-154
    • /
    • 2011
  • This article describes the Autonomous Vehicle #1 (A1), which won the 2010 Autonomous Vehicle Competition (AVC) organized by Hyundai Kia automotive group. The A1 was developed for high speed and stable driving without human intervention. The autonomous system of A1 was developed based on in-vehicle networks, electronic control units, and embedded software. Novel environment perception and navigation algorithm were evaluated and validated through the AVC. In this paper, we presented the system and software architecture of A1.

Experimental Study on Resistance and Running Attitude of an Amphibious Assault Vehicle with a Hydrofoil as a Trim-control Device (상륙돌격장갑차의 수상항주 시 트림조절을 위한 수중익에 의한 저항 및 자세변화에 대한 실험적 연구)

  • Lee, Seung-Jae;Lee, Tae-il;Lee, Jong-Jin;Nam, Wonki;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.96-101
    • /
    • 2017
  • Amphibious assault vehicles have been used in the Marine Corps. In recent years, their ability to move faster is becoming one of the most important considerations. At high speeds, the vehicle tends to sink at the stern and sometimes the opposite occurs. Such dynamic trim plays a significant role in determining the vehicle's hydrodynamic performance. Furthermore, an excessive trim by stern upsets the viewing angle. We have thus considered a stern hydrofoil to reduce the dynamic trim of the amphibious assault vehicle. Laboratory-scale resistance tests were conducted in a towing tank at the Seoul National University (SNU). This study aims to make a preliminary assessment of the hydrodynamic performance of the vehicle with the stern hydrofoil and to investigate permissible speed range of the vehicle. The experimental results show that the stern hydrofoil can successfully achieve a reduction of both the dynamic trim and the hydrodynamic resistance at running speeds above 20 km/h.