• Title/Summary/Keyword: High-speed railway bridge

Search Result 257, Processing Time 0.027 seconds

Damping Estimation of Railway Bridges Using Extended Kalman Filter (확장형 칼만 필터를 이용한 철도교의 감쇠비 분석)

  • Park, Dong-Uk;Kim, Nam-Sik;Kim, Sung-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.294-300
    • /
    • 2009
  • In high speed railway bridges, dynamic analysis is important because of high passing velocity and moving load at the regular intervals, and damping ratio is a major parameter to predict dynamic responses. In this paper, damping ratios were estimated by using half power band width method and extended Kalman filter according to acceleration signal conditions, and a relationship between estimated damping ratios and representative values of bridge vibration was derived. From the results, damping ratios estimated from total ambient vibration were more reliable than only free vibration part. In case of using extended Kalman filter, the estimated damping ratios varying with RMQ(root mean quad), as one of representative values of bridge vibration, have more feasible trend. Thus, it is shown that further studies on reliabilities of estimated damping ratios are needed.

New Lateral Force Measurement Method of the Wheel Plate for Railway Vehicles (철도차량용 차륜 플레이트에서의 새로운 횡압 계측방법)

  • Ham, Young-Sam;Jun, Hyun-Kyu;Seo, Jung-Won;Lee, Dong-Hyong;Kwon, Seok-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.621-625
    • /
    • 2012
  • Conventionally, to measure derailment coefficient of a railway wheel, strain gauges for lateral force measurement are attached to both side of the wheel. But narrow gap between railway wheel and traction motor makes it difficult to attache the strain gauges at the inner side of wheel. In this study, to overcome the hard accessibility to the strain gauge points by narrow gap, a new Wheatstone bridge connection method is presented by attaching all the strain gauges at the outer side of wheel with a new bridge connection. We evaluate the running safety of railway vehicles in accordance with railway safety regulations. The experimental results obtained shows higher sensitivity than conventional methods and the derailment coefficient measurement procedure becomes simpler.

Comparison of Girder Height and Construction Cost by Span in Various Types of Railway Bridge (철도교량형식의 경간에 따른 형고 및 공사비 비교연구)

  • Lee, Tae-Gyu;Oa, Seong-Wook
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.5
    • /
    • pp.471-476
    • /
    • 2008
  • The superstructure type of the railway bridge in our country, is mainly classified into the box girder and the I-type girder. The box girder is widely used in the high speed railway bridge because of the safety due to dynamic behavior. The I-type girder is used in the conventional railway bridge, and is also divided into the general type and the composite type, and the newly modified types have been developed. According to the current railway bridge design code, the girder design by the span length in various types of railway bridge is performed in is study. The suitable girder height and the construction cost by the span length are analyzed, and the comparative analysis of the structural efficiency and the economical efficiency is carried out. From this study, the composite type girder is appeared the good result in respect of the structural efficiency. However, in the economical aspect, the general I-type girder is required less cost than the other types.

Dynamic Characteristics of High-speed Railway Steel Bridges (고속철도 강교량의 진동특성 분석)

  • Lee, Jung-Whee;Kim, Sung-Il;Kwark, Jong-Won;Lee, Pil-Goo;Yoon, Tae-Yang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.632-637
    • /
    • 2007
  • The dynamic behavior of two steel bridges crossed by the Korean High Speed Train(KHST) has been investigated experimentally and the results are compared with the specification requirement of BRDM and other typical PSC Box bridge's responses. The investigated bridges are a 2-girder steel bridge of 1@40m span length(E-Won Bridge), 2@50m span length (Ji-Tan Bridge), and a PSC Box girder bridge of 2@40m span length (Yeon-Jae Bridge). A set of experimental tests were performed during operation of KHST, and a number of accelerometers, LVDTs and ring-type displacement transducers were utilized for measurement of three kinds of dynamic responses (acceleration, deflection, and end-rotation angle). Measured responses show that the vertical deflections and end-rotation angles of the three bridges are all satisfying the spec. requirement with large margin, but it was also found acceleration responses which are very close or exceed the limit value. Most of the excessive acceleration responses were found when the passing velocity of the KHST is close to the critical velocity ($V_{cr}$) which causes resonance. No noticeable differences of dynamic responses due to the different materials(steel or concrete) could be found within these experimental results.

Dynamic Analysis of New-type Precast V-girder Bridge (신형식 V형 거더 교량의 동적안정석 해석)

  • Cho, Jeong-Rae;Kim, Yeong-Jin;Yang, Yeon-Jong;Koo, Ja-Kap
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1536-1541
    • /
    • 2011
  • Simple girder bridges are more economical than commonly used PSC box girder bridges in high-speed railway construction, if they secure the riding stability. In this study, the dynamic behavior and riding stability of the newly developed precast V-girder bridge are analyzed. The dynamic moving load analysis is used including two train load case : the KTX train and freight train.

  • PDF

Experimental investigations of the seismic performance of bridge piers with rounded rectangular cross-sections

  • Shao, Guangqiang;Jiang, Lizhong;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.463-484
    • /
    • 2014
  • Solid piers with a rounded rectangular cross-section are widely used in railway bridges for high-speed trains in China. Compared to highway bridge piers, these railway bridge piers have a larger crosssection and less steel reinforcement. Existing material models cannot accurately predict the seismic behavior of this kind of railway bridge piers. This is because only a few parameters, such as axial load, longitudinal and transverse reinforcement, are taken into account. To enable a better understanding of the seismic behavior of this type of bridge pier, a simultaneous influence of the various parameters, i.e. ratio of height to thickness, axial load to concrete compressive strength ratio and longitudinal to transverse reinforcements, on the failure characteristics, hysteresis, skeleton curves, and displacement ductility were investigated. In total, nine model piers were tested under cyclic loading. The hysteretic response obtained from the experiments is compared with that obtained from numerical studies using existing material models. The experimental data shows that the hysteresis curves have significantly pinched characteristics that are associated with small longitudinal reinforcement ratios. The displacement ductility reduces with an increase in ratio of axial load to concrete compressive strength and longitudinal reinforcement ratio. The experimental results are largely in agreement with the numerical results obtained using Chang-Mander concrete model.

Dynamic Behavior and Resonance Reduction of Two-Span Continuous Bridges for Korean Train eXpress (KTX용 2경간 연속교량의 동적거동 및 공진감소)

  • Oh, Juwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.95-104
    • /
    • 2008
  • Dynamic behaviors of the two-span continuous bridge which is one of prototypes on Gyoung-Bu high-speed railway are analyzed and some methods for reducing the resonance of the bridge are proposed. The bridge is modeled as a two-span continuous beam and the load is a vehicle of TGV-K (2p+18T) with length of 380.15 meter traveling on the railway bridge at some constant velocity. The equations governing the dynamic behaviors of the bridge are partial differential equations produced by using a system with distributed mass and elasticity. The analysis of the governing equations is performed by the mode superposition method which has modal coordinates solved by Duhamel's integral. Without considering the train velocity the dynamic reponses can be greatly reduced at some special lengths of bridge. It is different from the results of simple bridges researched so far. When the dynamic responses increase rapidly to make a resonance phenomenon depending on the train velocities, the several methods are proposed to deduce the resonance.

The Effect of the ZLR and Tied Sleeper to Reduce the Track Irregularity in the Bridge Expansion Joint Zone (교량신축부에서의 궤도틀림 저감을 위한 활동체결구 및 침목결속 효과)

  • Kang, Tae-Ku;Min, Kyung-Ju;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2405-2408
    • /
    • 2011
  • In recent time, the cause analysis and the reduction of the track irregularity have become the most important issue in the ballasted track on the high-speed railway bridge. This is because that the frequency of the maintenance work at the bridge expansion joint zone is on the rise. The track irregularity on the railway bridge starts at the end of the bridge-deck and spreads along the bridge. Due to the dynamic vibration and the thermal expansion of the bridge, the compaction of the ballast gravel on the bridge expansion joint zone become loose and then the progress of the track irregularity result from the train-induced dynamic impact is accelerating further. Among the several options for reducing the track irregularity on the bridge expansion joint zone, the application and efficiency of the zero longitudinal restraint(ZLR) and tied sleeper are investigated in this paper. Field test construction has been conducted, then the progress of the track irregularity and the frequency of the maintenance work are analyzed before and after the filed test construction. Of the two methods, it is shown that the installation of the ZLR seems to be better than the tied sleeper.

  • PDF

Comparison of Efficiency by Span in Various Railway Bridge Types (철도교량형식의 경간에 따른 효율성 비교연구)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.7
    • /
    • pp.511-517
    • /
    • 2014
  • The superstructure type of the railway bridge in our country, is mainly classified into the box girder and the I-type girder. The box girder is widely used in the high speed railway bridge because of the safety due to dynamic behavior. The I-type girder is used in the conventional railway bridge, and is also divided into the general type and the composite type, and the newly modified types have been developed. According to the current railway bridge design code, the girder design by the span length in various railway bridge types are performed in this study. The suitable girder height by the span length are analyzed, and the comparative analysis of the structural efficiency and the economical efficiency is carried out. From this study, the composite type girder is appeared the good result in respect of the structural efficiency. However, in the economical aspect, the general I-type girder is required less cost than the other types.

A Study on the Influence of Track Stability for Ballast Resistance Force (도상저항력이 궤도 안전성에 미치는 영향)

  • 박준명;이방우;박선규;이종득
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.169-173
    • /
    • 2003
  • Transportation by railroad is superior to other transport in a mass transport, stability, rapid transit, delightfulness and low-pollution etc. But, it need to ensure a track stability that supports the train-load for high-speed in transportation by railroad. Ballast resistance force resists against the buckling of track taking a rail-tie's place. So, it plays an important role in a careful train-service. So, in this papers, we forced on measuring and theorizing about the Ballast Resistance Force that play a key role in track stability and high-speed. And we studied the mechanical property. Finally, we suggested the method of securing Ballast Resistance Force and the report for a careful train-service in high-speed.