• Title/Summary/Keyword: High-speed motor drive

Search Result 528, Processing Time 0.022 seconds

Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors

  • Sekour, M'hamed;Hartani, Kada;Draou, Azeddine;Allali, Ahmed
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.530-543
    • /
    • 2013
  • This paper describes a control scheme of speed sensorless fuzzy direct torque control (FDTC) of permanent magnet synchronous motor for electric vehicle (EV). Electric vehicle requires fast torque response and high efficiency of the drive. Speed sensorless FDTC In-wheel PMSM drives without mechanical speed sensors at the motor shaft have the attractions of low cost, quick response and high reliability in electric vehicle application. This paper presents a new approach to estimate the speed of in-wheel electrical vehicles based on Model Reference Adaptive System (MRAS). The direct torque control suffers in low speeds due to the effect of changes in stator resistance on the flux measurements. To improve the system performance at low speeds, a PI-fuzzy resistance estimator is proposed to eliminate the error due to changes in stator resistance. High performance sensorless drive of the in-wheel motor based on MRAS with on line stator resistance tuning is established for four motorized wheels electric vehicle and the whole system is simulated by matalb/simulink. The simulation results show the effectiveness of the new control strategy. This proposed control strategy is extensively used in electric vehicle application.

Sensorless Vector Control of Induction Motor Using Closed loop Flux Estimator (폐루프 자속추정기를 이용한 유도전동기의 센서리스 벡터제어)

  • 서영수;임영배;음두성;이상훈
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.217-220
    • /
    • 1998
  • In this paper, for high performance as drive, in the speed sensorless vector control of induction motor, introduced flux estimator of voltage model and error compensation algorithm using closed loop integration method, and then we proposed a improved flux estimation method of high accuracy. And the rotor speed is estimating using the stator current and the estimated flux, it is used speed information. The proposed scheme is verified through digital simulations and experiments for 3.7[kW] induction motor and shows good dynamic performance.

  • PDF

Performance of SR Drive for Hydraulic Pump

  • Lee, Sang-Hun;Lee, Dong-Hee;An, Young-Joo;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • This paper proposes a hydraulic pump system that uses a variable speed SR drive and constant capacity pump. For the design of the SRM (Switched Reluctance Motor) and digital controller, base speed and rating torque are determined from the mechanical specifications of the hydraulic pump. In order to minimize the power consumption during the maintaining of preset oil-pressure, the pressure control system changes the maximum oil-pressure band and flow rate according to the motor speed. The DSP control system adjusts the oil-pressure and the speed of the SRM from the pressure sensor signal, due to conservation of power consumption by the hydraulic pump. A 2.2Kw, 12/8 pole SR motor and DSP based digital controller are designed and tested with experimental set-up. The test results indicate that the system has some good features such as high efficiency and rapid response characteristics.

A Study on the Spindle Motor Drive for the Spindle of Machining Center (공작기계 주축용 스핀들 전동기 구동에 관한 연구)

  • Han, Y.S.;Ahn, S.C.;Song, J.H.;Lee, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2110-2112
    • /
    • 1997
  • The induction motor drive for the spindle of machining center is required to do not only a constant torque operation in low speed region(below base rpm), but also a constant power operation in high speed region(beyond base rpm). Also, control voltage shortage due to high speed operation must be overcome. The vector controlled inverter system with input 3 phase pwm converter is designed for that kind of condition. We experimented the performance of the inverter system with spindle motor made by Hyosung industries co.

  • PDF

Novel RPWM Techniques for Three-Phase Induction Motor Drive (3상 유도전동기 구동을 위한 새로운 RPWM 기법)

  • 권수범;김남준
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.262-268
    • /
    • 2004
  • This thesis is proposing novel RPWM (Random PWM) techniques that can locate PWM pulse to do random. RPWM techniques to propose locates SVPWM (Space Vector PWM) pulse by number of each random and principle to locate of pulse applies different random function and locate pulse. For propriety verification of proposed techniques, achieve an simulation and experiment that use MATLAB/SIMULINK about proposed RPWM techniques algorithm and IGBT inverter composition that use DSP(TMS320C31). Specially, analyze harmonic spectra of inverter output current when the induction motor speed is more than 10,000 rpm, confirm that RPWM's effect in high speed degree appears. Proposed RPWM techniques propriety prove from reduction effect of harmonic magnitude that corresponds to an integer times of switching frequency.

Design of Permanent Magnet Synchronous Motor for High-Speed Drive (고속 운전용 영구자석형 동기 전동기(PMSM)의 설계)

  • Jang, Seok-Myeong;Cho, Han-Wook;Choi, Jang-Young;Choi, Sang-Ho;Choi, Sang-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.141-143
    • /
    • 2005
  • A permanent magnet synchronous motor motor for high-speed drive was developed based on an analytical method. Especially. rated speed and torque according to switching scheme are offered. A prototype machine was also fabricated and tested to confirm the design. Preliminarily obtained experimental data using the prototype machine shows the validity of the design.

  • PDF

A Novel Seamless Direct Torque Control for Electric Drive Vehicles

  • Ghaderi, Ahmad;Umeno, Takaji;Amano, Yasushi;Masaru, Sugai
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.449-455
    • /
    • 2011
  • Electric drive vehicles (EDV) have received much attention recently because of their environmental and energy benefits. In an EDV, the motor drive system directly influences the performance of the propulsion system. However, the available DC voltage is limited, which limits the maximum speed of the motors. At high speeds, the inverter voltage increases if the square wave (SW) voltage (six-step operation) is used. Although conventional direct torque control (DTC) has several advantages, it cannot work in the six-step mode required in high-speed applications. In this paper, a single-mode seamless DTC for AC motors is proposed. In this scheme, the trajectory of the reference flux changes continuously between circular and hexagonal paths. Therefore, the armature voltage changes smoothly from a high-frequency switching pattern to a square wave pattern without torque discontinuity. In addition, because multi-mode controllers are not used, implementation is more straightforward. Simulation results show the voltage pattern changes smoothly when the motor speed changes, and consequently, torque control without torque discontinuity is possible in the field weakening area even with a six-step voltage pattern.

A Study on a Control Method for Small BLDC Motor Sensorless Drive with the Single Phase BEMF and the Neutral Point (소형 BLDC 전동기 센서리스 드라이브의 단상 역기전력과 중성점을 이용한 제어기법 연구)

  • Jo, June-Woo;Hwang, Don-Ha;Hwang, Young-Gi;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.1-7
    • /
    • 2014
  • Brushless Direct Current(BLDC) Motor is essential to measure a rotor position because of that this motor type needs to synchronize the rotor's position and changeover phase current instead of a brush and commutator used on the existing dc motor. Recently, many researches have studied on sensorless control drive for BLDC motor. The conventional control methods are a compensation value dq, Kalman filter, Fuzzy logic, Neurons neural network, and the like. These methods has difficulties of detecting BEMF accurately at low speed because of low BEMF voltage and switching noise. And also, the operation is long and complex. So, it is required a high-performance microprocessor. Therefore, it is not suitable for a small BLDC motor sensorless drive. This paper presents control methods suitable for economic small BLDC motor sensorless drive which are an improved design of the BEMF detection circuit, simplifying a complex algorithm and computation time reduction. The improved motor sensorless drive is verified stability and validity through being designed, manufactured and analyzed.

MICROPROCESSOR BASED SENSORLESS SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR (마이크로 프로세서를 이용한 영구자석 동기전동기의 센서리스 속도제어)

  • Choi, J.Y.;Kim, S.H.;Shin, J.K.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.33-35
    • /
    • 1995
  • Permanent magnet brushless motor is widely used in industrial drive applications due to high efficiency, high power ratio, and easy maintenance. Position and speed sensors required in this dolor increase the drive cost, and reduce the application range. Some papers present the sensorless speed control using DSP with a high processing performance. However, DSP increases the cost, and makes the implementation difficult. This study has performed the sensorless speed control with a microprocessor system which can be easily accessed.

  • PDF

Design and Development of Low-Cost Switched Reluctance Motor Drive System (저가형 스위치드 릴럭턴스 모터 드라이브 시스템 개발)

  • Ha, Keun-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2162-2167
    • /
    • 2009
  • A Low cost and variable speed brushless motor drive system with single switch per phase is presented. The motor drive is realized with a novel two-phase flux-reversal-free switched reluctance motor and a split AC two switch converter. The strategy of the controller and the converter for its realization are described. Comparisons between a split AC converter, asymmetric converter, split DC converter, single controllable switch converter, and N+1 converter are performed for its device rating, cost, switching losses and conduction losses, and converter efficiency. The split AC converter is analyzed and simulated to verify the characteristics of the converter circuitry and control feasibility and the simulation results are presented. The efficiency with various loads is numerically estimated and experimentally compared from viewpoint of subsystem and system in details. The focus of this paper is to compare the presented motor drive system to the asymmetric converter system throughout experiments and demonstrate single switch per phase converter having comparable efficiency as the asymmetric converter system.