• Title/Summary/Keyword: High-speed Fuzzy Controller

Search Result 165, Processing Time 0.024 seconds

Design of Nonlinear Fuzzy I+PD Controller Using Simplified Indirect Inference Method (간편간접추론방법을 이용한 비선형 퍼지 I+PD 제어기의 설계)

  • Chai, Chang-Hyun;Chae, Seok;Park, Jae-Wan;Yoon, Myong-Kee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2898-2901
    • /
    • 1999
  • This paper describes the design of nonlinear fuzzy I+PD controller using simplified indirect inference method. First, the fuzzy I+PD controller is derived from the conventional continuous time linear I+PD controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional I+PD controller. which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability. Particularly when the process to be controlled is nonlinear When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one Proposed by D. Misir et at.

  • PDF

Design of Nonlinear Fuzzy PI+D Controller Using Simplified Indirect Inference Method (간편 간접추론방법을 이용한 비선형 퍼지 PI+D 제어기의 설계)

  • Chai, Chang-Hyun;Lee, Sang-Tae;Ryu, Chang-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2839-2842
    • /
    • 1999
  • This paper describes the design of fuzzy PID controller using simplified indirect inference method. First, the fuzzy PID controller is derived from the conventional continuous time linear PID controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PID controller, which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one proposed by D. Misir et al.

  • PDF

A Design for Elevator Group Controller of Building Using Adaptive Dual Fuzzy Algorithm

  • Kim, Hun-Mo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1664-1675
    • /
    • 2001
  • In this paper, the development of a new group controller for high-speed elevators is described utilizing the approach of adaptive dual fuzzy logic. Some goals of the control are to minimize the waiting time, mean-waiting time and long-waiting time in a building. When a new hall call is generated, all adaptive dual fuzzy controller evaluates the traffic patterns and changes the membership function of a fuzzy rule base appropriately. A control algorithm is essential to control the cooperation of multiple elevators in a group and the most critical control function in the group controller is an effective and proper hall call assignment of the elevators. The group elevator system utilizing adaptive dual fuzzy control clearly performs more effectively than previous group controllers.

  • PDF

Full Fuzzy-Logic-Based Vector Control for Permanent Magnet Synchronous Motors (영구자석 동기 모터를 위한 풀 퍼지 로직 기반 벡터제어)

  • Yu, Jae-Sung;Yoo, Young-Hwan;Won, Chung-Yuen;Lee, Byoung-Kuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.100-106
    • /
    • 2006
  • This paper proposes a full fuzzy-logic-based vector control for a permanent-magnet synchronous motor (PMSM). The high-performance of the proposed fuzzy logic control (FLC)-based PMSM drive are investigated and compared with the conventional proportional-integral (PI) controller at different conditions, such as step change in command speed and load and etc. In the experimental and simulation the FLC is employed in the speed and current controller. The experimental results show to be a suitable replacement of the conventional PI controller for the high-performance drive system.

Speed Sensorless Vector Control of High-Speed IM using Intelligent Control Algorithm (지능제어 알고리즘을 이용한 초고속 유도전동기의 속도 센서리스 제어)

  • Kim, Yun-Ho;Hong, Ik-Pyo;Lee, Byeong-Sun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.426-430
    • /
    • 1999
  • In this paper, a speed sensorless algorithm for a high-speed induction motor is proposed. The proposed algorithm simply estimates rotor speed by integrating the deviation between the command current value of a controller and the real current value of the motor. To estimate rotor speed without a speed sensor, a fuzzy speed controller and a neural network speed estimator are applied. Computer simulation and implementation of the proposed system is described.

  • PDF

A Design of Power System Stabilization for SVC System Using Self Tuning Fuzzy Controller (자기조정 퍼지제어기를 이용한 SVC계통의 안정화 장치의 설계)

  • Joo, Seok-Min;Hur, Dong-Ryol;Kim, Hai-Jai
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • This paper presents a control approach for designing a self tuning fuzzy controller for a synchronous generator excitation and SVC system. A combination of thyristor-controlled reactors and fixed capacitors (TCR-FC) type SVC is recognized as having the most flexible control and high speed response, which has been widely utilized in power systems, is considered and designed to improve the response of a synchronous generator, as well as controlling the system voltage. The proposed parameter self tuning algorithm of fuzzy controller is based on the steepest decent method using two direction vectors which make error between inference values of fuzzy controller and output values of the specially selected PSS reduce steepestly. Using input-output data pair obtained from PSS, the parameters in antecedent part and in consequent part of fuzzy inference rules are learned and tuned automatically using the proposed steepest decent method. The related simulation results show that the proposed fuzzy controller is more powerful than the conventional ones.

Idle Speed Control of Automotive Engine using Fuzzy Logic (퍼지논리를 이용한 자동차 엔진의 공회전 속도 제어)

  • 장재호;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.53-62
    • /
    • 1994
  • In this paper, a fuzzy logic-based idle speed controller is designed for automotive engine with a purpose of high efficiency and low pollution. When the idle speed is low engine operation is not smooth, otherwise fuel consumption is incresed. Therefore the idle speed must be maintained as low as possible within the scope that ensures smooth operation of engine. By simulation, we show that the idle speed controller has generated a proper control signal as engine condition or enviornment varies, and also operated well for unexpected cases. Also, an engine simulator, which is used as a basic tool for controller design, is developed and utilized for reduction of development time and cost.

  • PDF

Efficiency Optimization Control of IPMSM with Adaptive FLC-FNN Controller (적응 FLC-FNN 제어기에 의한 IPMSM의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.2
    • /
    • pp.74-82
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning control fuzzy neural network (AFLC-FNN) controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC-FNN controller. Also, this paper proposes speed control of IPMSM using AFLC-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled AFLC-FNN controller, the operating characteristics controlled by efficiency optimization control are examined in detail.

Fuzzy sliding mode controllers for high performance control of AC servo motors (AC 서보 모터의 고성능 제어를 위한 퍼지 슬라이딩 모드 제어기)

  • 김광수;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.732-735
    • /
    • 1997
  • Variable Structure Controller(VSC) is usually known to have robustness to bounded exogenous disturbances. The robustness is attributed to the discontinuous term in the control input. However, this discontinuous term also causes an undesirable effect called chattering. To alleviate chattering, a hybrid controller consisting of VSC and Fuzzy Logic Controller(FLC) is proposed, which belongs to the category of Fuzzy Sliding Mode Controller(FSMC). The role of FLC in FSMC is to replace a fixed gain of a discontinuous term with a time-varying one based on a specified rule base. The characteristics of proposed controller are shown to be similar to those of VSC with a saturation function instead of sign function. The only remarkable difference is the nonlinearity whose form can be adjusted by free parameters, normalize gain, denormalize gain, and membership functions. Applied to AC servo motor, the proposed controller is compared with VSC in a regulation problem as well as a speed tracking problem. The simulation results show a substantial chatter reduction.

  • PDF

Design of fuzzy speed/phase controller for drum motor in home VCR (VCR용 드럼 모터의 퍼지 속도/위상 제어기 설계)

  • 박귀태;이기상;박태홍;배상욱;이상락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.457-462
    • /
    • 1991
  • Recently, digital techniques have been applied to servo systems of the home VCR, which result in high accuracy, high stability and a small number of parts required. The servo systems are now becoming more compex because the latest home VCRs are stringly required to have many functions. Given these circumstances, software servo concepts were introduced to the VCR servo system with microprocessor. But there are some difficulties in the conventional digital PID controller, eg. caculating the exact gains or dynamics. In this paper, we introduce FLC(Fuzzy Logic Controller) to the speed/phase control for VCR drum motor. To show the usefulness of the proposed controller, some studies are discussed by simulation and experiment.

  • PDF