• 제목/요약/키워드: High-power switching converter

Search Result 1,007, Processing Time 0.032 seconds

Single-Phase converter with partial resonant circuit (단상 컨버터의 부분공진 회로)

  • Lee, Hyun-Woo;Kwak, Dong-Kurl
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.129-131
    • /
    • 1993
  • Power conversion system of high performance requires high switching frequency power converter. In order to minimize commutation stress and switching losses, in this paper, AC-DC converter is embedded a partial resonant DC-Link circuit with the object of ZVCS(zero voltage switching and zero current switching). The partial resonant occurs just before converter switch operates. Thus, VA ratings of the elements and their dissipations due to effective series resistance (ESR) are very low. Some simulative results on computer are included to confirm the validity of the analytical results.

  • PDF

Soft-Switching Boost Chopper Type DC-DC Power Converter with a Single Auxiliary Passive Resonant Snubber

  • Nakamura Mantaro;Myoui Takeshi;Abudullh Al Mamun;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.256-260
    • /
    • 2001
  • This paper presents boost and buck and buck-boost DC-DC converter circuit topologies of high-frequency soft switching transition PWM chopper type DC-DC high power converters with a single auxiliary passive resonant snubber. In the proposed boost power converter circuits operating under a principle of ZCS turn-on and ZVS turn-off commutation schemes, the capacitor and inductor in the auxiliary passive resonant circuit works as the loss less resonant snubber. In addition to this, the switching voltage and current peak stresses as well as EMI and RFI noises can be basically reduced by this single passive resonant snubber. Moreover, it is proved that converter circuit topologies with a passive resonant snubber are capable of solving some problems of the conventional hard switching PWM processing based on high-ferquency pulse modulation operation principle. The simulation results of this converter are discussed as compared with the experimental ones. The effectiveness of this power converter with a single passive resonant snubber is verified by the 5kW experimental breadboad set up.

  • PDF

Development of An Open Frame Type High Power Density Switching Converter (개방형 고밀도 스위칭 컨버터의 개발)

  • 오용승;김희준
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.468-474
    • /
    • 2003
  • This paper describes the development of an open frame type high power density switching converter. It is based on the active clamp forward converter with synchronous rectifier, and packaged by using the open frame and multi-layer printed circuit board (PCB) technology to achieve the higher power density. Furthermore, the windings of transformer and inductor are also realized by multi-layer PCB so that it also contributes to achieve higher power density. Through the experiment on the prototype converter of 50[W], it is confirmed that power density of 50[W/i$n_3$] and maximum efficiency of over 91[%] are obtained.

A Study of the Digital Phase-shift Resonant Converter to Reduce the conduction Loss and Stress of the Switching Device (스위칭 소자의 전도손실과 스트레스를 저감하기 위한 디지털 위상천이 공진형 컨버터에 관한 연구)

  • Shin, Dong-Ryul;Hwang, Young-Min;Kim, Dong-wan;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.10-17
    • /
    • 2002
  • Due to the development of information communication field, the interest of the SMPS(Switched Mode Power Supply) is increased. The size and weight of SMPS are decided by inductor, capacitor and transformer. Thus, the low loss converter which is operated in high speed switching is required. The resonant FB DC-DC converter is able to operate in high speed switching and apply to high power field because the switching loss is low. In this thesis, it is proposed to control strategy for constant output power of resonant FB DC-DC converter in variable input voltage. The proposed control system is a digital I-PD type control and apply to phase-shift resonant type controller. The output voltage tracks reference without steady state error in variable input voltage. The validity of proposed control strategy is verified from results of simulation and experiment.

High-Frequency Forward Transformer Linked PWM DC-DC Power Converter with Zero Voltage Switching and Zero Current Switching Bridge Legs

  • Moisseev, Serguei;Hamada, Satoshi;Ishitobi, Manabu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.278-287
    • /
    • 2002
  • A novel zero-voltage and zero-current switching PWM DC-DC converter with lowered conduction losses is presented in this paper. A new double two-switch forward high frequency transformer type soft-switching converter topology is developed to minimize circulating currents occurs during freewheeling period. This converter has advantages as less number of the components, simple control principle under constant operation frequency, free of transformer Imbalance effect. The principle of operation is illustrated with steady-state analysis. Moreover, the effectiveness of the proposed converter topology is verified by implementation of a 500w-100kHz breadboard using IGBTs.

High Frequency Soft Switching Forward DC/DC Converter Using Non-dissipative Snubber (무손실 스너버적용 고주파 소프트 스위칭 Forward 컨버터)

  • 최해영;김은수;변영복;김철수;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.614-617
    • /
    • 1999
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved zero voltage switching forward dc/dc converter is proposed. The proposed converter is constructed by using energy recovery snubbers in parallel with the main switches and output diodes of the conventional forward dc/dc converter. Due to the use of the energy recovery snubbers in the primary and secondary side, the proposed converter achieves zero-voltage-switching turn-off without switching losses for switching devices and output rectification diodes. The complete operating principles and experimental results will be presented.

  • PDF

Optimized Design of Bi-Directional Dual Active Bridge Converter for Low-Voltage Battery Charger

  • Jeong, Dong-Keun;Ryu, Myung-Hyo;Kim, Heung-Geun;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.468-477
    • /
    • 2014
  • This study proposes an optimized design of a dual active bridge converter for a low-voltage charger in a military uninterrupted power supply (UPS) system. The dual active bridge converter is among various bi-directional DC/DC converters that possess a high-efficiency isolated bi-directional converter. In the general design, the zero-voltage switching(ZVS) region is reduced when the battery voltage is high. By contrast, efficiency is low because of high conduction losses when the battery voltage is low. Variable switching frequency is applied to increase the ZVS region and the power conversion efficiency, depending on battery voltage changes. At the same duty, the same power is obtained regardless of the battery voltage using the variable switching frequency. The proposed method is applied to a 5 kW prototype dual active bridge converter, and the experimental results are analyzed and verified.

An Improved Zero Voltage Switching Forward DC/DC Converter For Reducing Switching Losses

  • Kim, Eun-Soo;Joe, Kee-Yeon;Park, Hae-Young;Kim, Yoon-Ho;Kim, Choon-Same
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1051-1055
    • /
    • 1998
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved zero voltage switching forward dc/dc converter is proposed. The proposed converter is constructed by using energy recovery snubbers in parallel with the main switches and output diodes of the conventional forward dc/dc converter. Due to the use of the energy recovery snubbers in the primary and secondary side, the proposed converter achieves zero-voltage-switching turn-off without switching losses for switching devices and output rectification diodes. The complete operating principles and experimental results will be presented.

Soft-Switched PWM DC-DC High-Power Converter with Quasi Resonant-Poles and Parasitic Reactive Resonant Components of High-Voltage Transformer (부분 공진형 소프트 스위칭 PWM DC-DC 고전압 컨버터)

  • 김용주;신대철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.384-394
    • /
    • 1999
  • This paper deals with a fixed frequency full-bridge inverter type DC-DC high-power converter with high frequency high voltage(HFHV) transformer-coupled stage, which operates under quasi-resonant ZVS transition priciple in spite of a wide PWM-based voltage regulation processing and largely-changed load conditions. This multi-resonant(MR) converter topology is composed of a series capacitor-connected parallel resonant tank which makes the most of parasitic circuit reactive components of HFHV transformer and two additional quasi-resonant pole circuits incorporated into the bridge legs. The soft-switching operation and practical efficacy of this new converter circuit using the latest IGBTs are actually ascertained through 50kV trially-produced converter system operating using 20kHz/30kHz high voltage(HV) transformers which is applied for driving the diagnostic HV X-ray tube load in medical equipments. It is proved from a practical point of view that the switching losses of IGBTs and their electrical dynamic stresses relating to EMI noise can be considerably reduced under a high frequency(HF) switching-based phase-shift PWM control process for a load setting requirements.

  • PDF

Performance Evaluation of GaN-Based Synchronous Boost Converter under Various Output Voltage, Load Current, and Switching Frequency Operations

  • Han, Di;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1489-1498
    • /
    • 2015
  • Gallium nitride (GaN)-based power switching devices, such as high-electron-mobility transistors (HEMT), provide significant performance improvements in terms of faster switching speed, zero reverse recovery, and lower on-state resistance compared with conventional silicon (Si) metal-oxide-semiconductor field-effect transistors (MOSFET). These benefits of GaN HEMTs further lead to low loss, high switching frequency, and high power density converters. Through simulation and experimentation, this research thoroughly contributes to the understanding of performance characterization including the efficiency, loss distribution, and thermal behavior of a 160-W GaN-based synchronous boost converter under various output voltage, load current, and switching frequency operations, as compared with the state-of-the-art Si technology. Original suggestions on design considerations to optimize the GaN converter performance are also provided.