• 제목/요약/키워드: High-energy-density capacitor

검색결과 76건 처리시간 0.033초

다중 동력 연료전지 하이브리드 장갑차량의 동력관리 전략에 관한 연구 (A Study on Power Management Strategy for Multi-Power Source Fuel Cell Hybrid Armored Vehicle)

  • 안상준;김태진;이교일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.361-365
    • /
    • 2005
  • Since the fuel cell uses the hydrogen for its fuel. it has no emission and higher efficiency than an internal combustion engine. Also fuel cell is much quieter than engine generator and generates heat much less than engine generator. So it has advantage of Army's 'si lent watch' capability and the ability to operate undetected by the enemy. The fuel cell hybrid system combines a fuel cell power system with an ESS. The ESS (e.g., batteries or ultracapacitors) reduces the fuel cell's peak power and transient response requirements. It allows the fuel cell to operate more efficiently and recovery of vehicle energy during deceleration. The battery has high energy density, so it has the advantage regarding driving distance. However, it has a disadvantage considering dynamic characteristic because of low power density. One other hand. the ultracapacitor has higher power density, so it can handle sudden change or discharge of required power. Yet. it has lower energy density. so it will be bigger and heavier than the battery when it has the same energy. This paper proposes the power management strategy for multi-power source fuel cell hybrid system. which is applied with the merits of both battery and ultra capacitor by using both of them simultaneous.

  • PDF

Parallel Load Techinques Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • 제17권1호
    • /
    • pp.27-32
    • /
    • 2012
  • Transcranial magnetic stimulation requires an electric field composed of dozens of V/m to achieve stimulation. The stimulation system is composed of a stimulation coil to form the electric field by charging and discharging a capacitor in order to save energy, thus requiring high-pressure kV. In particular, it is charged and discharged in capacitor to discharge through stimulation coil within a short period of time (hundreds of seconds) to generate current of numerous kA. A pulse-type magnetic field is formed, and eddy currents within the human body are triggered to achieve stimulation. Numerous pulse forms must be generated to initiate eddy currents for stimulating nerves. This study achieved high internal pressure, a high number of repetitions, and rapid switching of elements, and it implemented numerous control techniques via introduction of the half-bridge parallel load method. In addition it applied a quick, accurate, high-efficiency charge/discharge method for transcranial magnetic stimulation to substitute an inexpensive, readily available, commercial frequency condenser for a previously used, expensive, high-frequency condenser. Furthermore, the pulse repetition rate was altered to control energy density, and grafts compact, one-chip processor with simulation to stably control circuit motion and conduct research on motion and output characteristics.

질소가 도핑된 그라핀을 이용한 고용량의 조절이 가능한 플렉서블 울트라커페시터 (Flexible, Tunable, and High Capacity Ultracapacitor using Nitron-Doped Graphene)

  • 정형모;신원호;최윤정;강정구;최장욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • We developed a simple method to synthesis a nitrogen doped graphene, nitrogen plasma treated graphene (NPG) sheets thought nitrogen plasma etching of graphene oxide (GO). X-ray photo electron spectroscopy (XPS) study of NPG sheets treated at various plasma conditions reveal that N-doping is classified to 3 kinds of binding configurations. The nitrogen doping concentration is at least 1.5 at % and up to 3 at% with changing of ratio of nitrogen configuration in NPG. Our group demonstrate ultracapacitor with high capacity and extremely durable using a NPG sheets that are comparable to pristine graphene supercapacitor, and pseudocapacitor using polymer and metal oxide with redox reaction, capacitance that are three-times higher, and a cycle life that are extremely stable. We also realized flexible capacitor by using the paper electrode that are coated by NPG sheets. NPG paper capacitor presented almost same performance compare with NPG on a metal substrate, and durability is much more enhanced than that. To additionally explain that how different kind of atoms in graphene layers can act as the ion absorption sites, we simulated the binding energy between nitrogen in graphene layer and ions in electrolyte. Increasing the energy density and long cycle life of ultracapacitor will enable them to compete with batteries and conventional capacitors in number of applications.

  • PDF

EnhAnced Electric Double Layer Capacitance of New Poly Sodium 4-tyrenesulfonate Intercalated Graphene Oxide Electrodes

  • 정혜경
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.287.2-287.2
    • /
    • 2013
  • We synthesized a new composite of poly sodium 4-styrenesulfonate intercalated graphene oxide for energy storage devices by controlling oxidation time in the synthesis of graphite oxide. Specific capacitance was improved from 20 F/g of the previous composites to 88 F/g of the new composite at the current density of 0.3 A/g. The capacitance retention was 94% after 3000 cycles, indicating that the new composites of high cyclic stability, prominent performance as electric double layer capacitor, and even low resistance could be an excellent carbon based electrode for further energy storage devices.

  • PDF

대전류 펄스 성형을 위한 300kJ급 커패시터뱅크 모듈의 특성 평가 (Evaluation of 300kJ Capacitor Bank Module for High Current Pulse Shaping)

  • 황동원;이홍식;진윤식;조주현;김종수;임근희;박원주;김진성;정재원;추중호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2086-2088
    • /
    • 2000
  • Key elements of in the development Electro-Thermal-Chemical propulsion (ETC) are high current pulse shaping, switching and storage bank device with high energy density 300kJ pulse power capacitor bank module for ETC application is designed and fabricated. The tested result are described.

  • PDF

전자기 성형에서의 테이퍼진 지속집중기의 자기압력에 관한 연구

  • 최재찬;조용철;이종수;황운석;김남환
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.14-27
    • /
    • 1990
  • Electromagnetic Pulse Forming is the one of the high velocity forming method. When the electric energy which is charged in the capacitor bank is suddenly discharged into the electromagnetic coil, the high magnetic field occurs at the airgap between the electromagnetic coil and workpiece. Thus we can obtain the high electromagnetic pressure, which is proportional to the square of magnetic flux density. This is the basic principle of the electromagnetic pulse forming. In this paper, the equivalent L-R-C circuit is derived by computing the magnetic field and its loss of the total system. Thus, the values of the magnetic flux density and pressure can be obtained from the equation of this circuit. As a result, the computed and measured values of the maximum magnetic flux density and pressure are compared and the characteristics of the tapered field shaper are further discussed as follows; 1) The strength of magnetic flux density and pressure can be controlled by the charged energy and the size of the airgap between the inner field shaper and the workpiece. 2) During the design of the tapered field shaper, the penetration of the magnetic flux through the sharp edge should be considered.

  • PDF

에너지 저장장치(ESS)의 비상 유도등 동작을 적용한 순간전압강하 보상장치에 관한 연구 (A Study on the Dynamic Voltage Restorer to Application Luminaire for Emergency Exit Sign Operation to the Energy Storage System)

  • 황락훈;나승권;김진선
    • 한국항행학회논문지
    • /
    • 제19권5호
    • /
    • pp.433-439
    • /
    • 2015
  • 최근 컴퓨터, 전기, 전자, 통신, 반도체 장비 등의 전기적 외란에 민감한 부하 설비의 사용이 증가함에 따라 전력 품질에 대한 관심이 높아지고 있다. 더 나아가서는 정밀 부하 장비들에 가장 빈번하게 발생하는 순간 전압 강하는 전력 품질 향상을 위해 적정한 보상이 필요하게 된다. 이를 위해 전기 이중층 커패시터 (EDLC : electric double layer capacitor)를 사용한 순간전압강하 보상장치가 개발되어 적용되고 있다. 본 논문에서는 순간전압강하 보상장치 (DVR : dynamic voltage restorer)에 사용되는 전기 이중층 커패시터(EDLC)에 비해 동일 사이즈 대비 에너지 밀도가 높은 하이브리드 커패시터 (hybrid capacitor)를 적용하는 연구를 하였고, 또한, 유도등의 비상 전원으로써 10년 이상의 수명을 보증할 수 있는 제품으로 하이브리드 커패시터 (hybrid capacitor)의 적용 가능성을 확인하였다.

A New Method for Extracting Interface Trap Density in Short-Channel MOSFETs from Substrate-Bias-Dependent Subthreshold Slopes

  • Lyu, Jong-Son
    • ETRI Journal
    • /
    • 제15권2호
    • /
    • pp.11-25
    • /
    • 1993
  • Interface trap densities at gate oxide/silicon substrate ($SiO_2/Si$) interfaces of metal oxide semiconductor field-effect transistors (MOSFETs) were determined from the substrate bias dependence of the subthreshold slope measurement. This method enables the characterization of interface traps residing in the energy level between the midgap and that corresponding to the strong inversion of small size MOSFET. In consequence of the high accuracy of this method, the energy dependence of the interface trap density can be accurately determined. The application of this technique to a MOSFET showed good agreement with the result obtained through the high-frequency/quasi-static capacitance-voltage (C-V) technique for a MOS capacitor. Furthermore, the effective substrate dopant concentration obtained through this technique also showed good agreement with the result obtained through the body effect measurement.

  • PDF

전기이중층커패시터의 가속열화시험 (An Accelerated Degradation Test of Electric Double-Layer Capacitors)

  • 정재한;김명수
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제12권2호
    • /
    • pp.67-78
    • /
    • 2012
  • An electric double-layer capacitor(EDLC) is an electrochemical capacitor with relatively high energy density, typically hundreds of times greater than conventional electrolytic capacitors. EDLCs are widely used for energy storage rather than as general-purpose circuit components. They have a variety of commercial applications, notably in energy smoothing and momentary-load devices, and energy-storage and kinetic energy recovery system devices used in vehicles, etc. This paper presents an accelerated degradation test of an EDLC with rated voltage 2.7V, capacitance 100F, and usage temperature $-40^{\circ}C{\sim}65^{\circ}C$. The EDLCs are tested at $50^{\circ}C$, $60^{\circ}C$, and $70^{\circ}C$, respectively for 1,750hours, and their capacitances are measured at predetermined times by constant current discharge method. The failure times are predicted from their capacitance deterioration patterns, where the failure is defined as 30% capacitance decrease from the initial one. It is assumed that the lifetime distribution of EDLC follows Weibull and Arrhenius life-stress relationship holds. The life-stress relationship, acceleration factor, and $B_{10}$ life at design condition are estimated by analyzing the accelerated life test data.

GaN-FET 기반의 고효율 및 고전력밀도 경계전류모드 능동 클램프 플라이백 컨버터 최적설계 (Optimal Design of GaN-FET based High Efficiency and High Power Density Boundary Conduction Mode Active Clamp Flyback Converter)

  • 이창민;구현수;지상근;유동균;강정일;한상규
    • 전력전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.259-267
    • /
    • 2019
  • An active clamp flyback (ACF) converter applies a clamp circuit and circulates the energy of leakage inductance to the input side, thereby achieving a zero-voltage switching (ZVS) operation and greatly reducing switching losses. The switching losses are further reduced by applying a gallium nitride field effect transistor (GaN-FET) with excellent switching characteristics, and ZVS operation can be accomplished under light load with boundary conduction mode (BCM) operation. Optimal design is performed on the basis of loss analysis by selecting magnetization inductance based on BCM operation and a clamp capacitor for loss reduction. Therefore, the size of the reactive element can be reduced through high-frequency operation, and a high-efficiency and high-power-density converter can be achieved. This study proposes an optimal design for a high-efficiency and high-power-density BCM ACF converter based on GaN-FETs and verifies it through experimental results of a 65 W-rated prototype.