• Title/Summary/Keyword: High-Workable Concrete

Search Result 24, Processing Time 0.027 seconds

An Experimental Study on the Mechanical Properties of Super- Workable Concrete (다짐이 필요없는 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 이준구;윤상대;박광수;이성행;배수호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.177-185
    • /
    • 1997
  • The purpose of this study is to investigate the mechanical properties of super-workable concrete using O.P.C., blast-furnace slag, and fly ash respectively. For this purpose, after determining the optimum mix proportion of super-workable concrete according to unit weight of binder and percentage of fine aggregate respectively, mechanical properties of super-workable concrete such as compressive, tensile and flexural strength as well as elastic modules were tested and analyzed. Also, the mechanical performances of super-workable concrete were compared with those of high-strength concrete with equal mix proportion of concrete. As a result, super-workable concrete have an excellent mobility, placeability, and segregation-resistance, but the strength of super-workable concrete was shown to be somewhat lower than that of high-strength concrete with equal mix proportion of concrete.

  • PDF

An Experimental Study on the Production and Mechanical Properties of Super-Workable Concrete (초유동 콘크리트의 제조 및 역학적 특성에 관한 실험적 연구)

  • Bae, Su-Ho;Youn, Sang-Dai;Lee, Dae-Hyoung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.104-113
    • /
    • 1998
  • The purpose of this experimental research is to produce the super-workable concrete using ordinary portland cement, blast-furnace slag lowder, and fly ash respectively, and investigate mechanical properties of super-workable concrete. For this purpose, after production of super-workable concrete for different unit weights of binder and percentages of fine aggregate, optimum mixing proportion of them was determined, and then mechanical properties of super-workable concrete such as static modulud of elasticity as well as compressive, tensile and flexural strength were tested and analyzed. Also, the mechanical performances of super-workable concrete were compared with those of high-strength concrete has an excellent mobility, compactability and segregation-resistance, but the strength of super-workable concrete is somewhat lower than that of high-strength concrete with equal mixing proportions of concrete.

  • PDF

An Experimental Study on the Manufacturing of High-workable Concrete (고유동콘크리트의 제조에 관한 실험적 연구)

  • 차태환;백광섭;권지훈;곽노현;홍순조;윤재환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.50-55
    • /
    • 1995
  • Recently, high-workable concrete has been developed and began to be used to a great extent in foreign countries, but it isn't familiar with and fully introduced in Korea yet. The aim of this paper is to suggest a reference data for the development of High-workable concrete according to the comparative analysis the effect of mix proportion (unit water sand/aggregate ratio) on the flowing characteristics. And also this paper aims to examine the compactability of High-workable concrete in a model wall-form.

  • PDF

An Experimental Study on Workability for Practical Use of High Workable and Normal Strength Concrete (고슬럼프 보통강도 콘크리트의 실용화를 위한 시공특성에 관한 실험적 연구)

  • Jung, Yang-Hee;Kim, Yong-Ro;Lee, Do-Bum;Jang, Sun-Ken
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.107-110
    • /
    • 2006
  • The purpose of this study is to suggest a reference data for the development of high workable and normal strength concrete using Polycarboxylate superplasticizer and granulated blast furnace slag as concrete admixtures. So in this study, it is quantitatively evaluated the workability, compressive strength, the heat of hydration and dry shrinkage of high workable concrete on normal compressive strength($21{\sim}27MPa$) for the practical use in construction field. As a result of this study, it is appeared that the performance of high workable and normal strength concrete is superior than that of ready-mixed concrete of the same strength through the B/P tests in the plants.

  • PDF

An Experimental Study on the Manufacturing and Application of High-Workable Concrete (고유동콘크리트의 제조 및 현장적용을 위한 실험적 연구)

  • 윤재환;차태환;홍순조;권지훈
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.2
    • /
    • pp.109-117
    • /
    • 1996
  • Recently, High-Workable Concrete has been developed and began to be used to a great extent in foreign countries, but it is not familiar with and fully Introduced in Korea yet. Therefore the aim of this paper is to suggest a reference data. for the development of High-Workable Concrete according to the comparative analysis which were done on the effects of mix proportion(water-binder ratio, sand-aggregate ratio, unit water, a kind of superplasticizer) on the flowing characteristics. And also this paper aims to examine the compactability and segregation resistance of High-Workable Concrete in a mock-up test and in a field test. From the result, we concluded that it is possible to produce and to use the High-Workable Concrete at the construction site.

An Effect of the Mixing Factor Influencing to the Properties of Super-Workable Concrete (초유동 콘크리트의 특성에 미치는 배합요인의 영향)

  • 우상륙;김기철;윤기원;이정희;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.25-28
    • /
    • 1993
  • This study is designed for analyzing the properties of super-workable concrete with the parmeter of water contens, S/A , superplasticizer kinds, superplasticizer dosage and cement replacement method of pozzolanic admixture. And this study is aimed for presenting the reference data in practical use of super-workable and high-performance concrete.

  • PDF

An Experimental Study on the Manufacturing of High Workable Concrete using Blastfurnace Cement (고로시멘트를 사용한 고유동 콘크리트의 제조에 관한 실험적 연구)

  • 최진만;백광섭;차태환;조원기;윤재환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.65-70
    • /
    • 1994
  • The aim of this study is to develop the High Workable Concrete which has not so large slump loss with time using blast-furnace cement and High range water reducing agent. Normal portland cement and blast-furnce cement was used as binders and water-binder ratio were ranging from 34% to 50%. 5 kinds of Superplasticizer and High range water reducing agent were used. Test results show that the blast-furmace cement was much higher flowability than normal portland cement and domestic High rang water reducing and AE agent had very small slump loss than others. The compactability of High Workable Concrete was also confirmed using model wall-form.

  • PDF

A Study on Development of 1 Day Usable High Early Strength Concrete Using Hauyne C/K System Additives (아원계 조강재를 이용한 1일 공용 콘크리트 개발연구)

  • 박정준;백상현;신영훈;김병권;윤경구;엄태선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.73-76
    • /
    • 1999
  • In recent, concrete material like specific cement and additives having many functions hsa been developed. In road pavement, ultra high early strength cement or organic material are used to open the road early, but there are many restrictions like workable time and special equipment. We aim to developed specific concrete which 1 day strength is over 300kgf/$\textrm{cm}^2$ to open the road within one day and workable time is maintained over 1 hour that can make the concrete ready mixed concrete. In this study, we are convinced if the ratio of hauyne clinker or its additive is increased early strength property is progressed and if the ratio of non hydrous gypsum is increased longtime strength is progressed. The concrete strength is 290-310 kgf/$\textrm{cm}^2$ at 1 day, 570-640 kgf/$\textrm{cm}^2$ at 28 day and the workable time is maintained over 30 minutes. As the results of this experiments We find out the possibility to developed the 1 day usable ready mixed concrete with high early strength.

  • PDF

A Study on Design of High Early Strength Cement and Concrete for Road Way Pavements (신속개방형 콘크리트 도로포장재의 설계를 위한 실험실적 평가 연구)

  • 임채용;엄태선;신국재;이종열;엄주용;조윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.295-300
    • /
    • 2001
  • In road pavements, it is known that cement concrete pavement has superior durability, safety in compared with asphalt concrete pavement. But in reparing pavement cement concrete pavement is not usually applied because of the length of time while the road is interrupted when using Ordinary and Rapid-hardening Portland Cement. And Super High Early Strength Cement and Ultra Super High Early Strength Cement are not favorable for ready mixied concrete because of rapid setting time, high slump loss and other restrictions. We aim to develope specific cement and concrete developing 1 day strength of over 300 kg/$cm^{2}$ to open the road within one day and workable time is maintained over 1 hour that can be used as ready mixed concrete. In this study, we Produced cement using rapid-hardening cement, Hauyne clinker, anhydride gypsum and accelerator and studied on its properties. The concrete strength was over 300 kg/$cm^{2}$ at 1 day and 550 kg/$cm^{2}$ at 28 day and workable time was maintained for over 1 hour.

  • PDF

A Study on Evaluation of High Early Strength Concrete as Pavement Overlay Materials for Early Traffic Opening(2) (신속개방형 콘크리트 도로포장재의 설계를 위한 평가 연구(2))

  • 엄태선;임채용;유재상;이종열;엄주용;조윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.233-238
    • /
    • 2001
  • In road Pavements, it is known that cement concrete pavement has superior durability, safety compared with asphalt pavement. But in repairing pavement, cement concrete pavement is not usually applied because of the length of time while the road is interrupted when using Ordinary and Rapid-hardening Portland Cement. And Super High Early Strength Cement and Ultra Super High Early Strength Cement are not favorable for ready mixed concrete because of rapid setting time, high slump loss and other restrictions. We aim to develope special cement and concrete developing 1 day strength of over 300 kg/$\textrm{cm}^2$ to open the road within one day and workable time is maintained over 1 hour that can be used as ready mixed concrete. In this study, we produced cement using rapid-hardening cement, Hauyne clinker, anhydride gypsum and accelerator and studied on its properties. The comperssive strength was over 400 kg/$\textrm{cm}^2$ and tensile at 1 day and workable time was maintained for over 1 hour.

  • PDF