• Title/Summary/Keyword: High-Speed Digital Circuits

Search Result 100, Processing Time 0.026 seconds

A Design of Digital Radio Frequency Memory (디지털 고주파 기억장치 설계)

  • 김재준;이종필;최창민;임중수
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.05a
    • /
    • pp.372-376
    • /
    • 2004
  • Digital memory circuits have been developed very fast according to the progress of semiconductor technology But It was very difficult to memorize a high frequency radio signal. Many years ago an analog loop was used for store of radio frequency signal, and the digital radio frequency memory was made to the development of wideband amplifier and high speed sampler. We present a design of wide-band DRFM using Johnson code and the simulation results with respect to the sampling speed. in this paper.

  • PDF

A Novel Hexagonal EBG Power Plane for the Suppression of GBN in High-Speed Circuits (초고속 디지털 회로의 GBN 억제를 위한 육각형 EBG 구조의 전원면 설계)

  • Kim, Seon-Hwa;Joo, Sung-Ho;Kim, Dong-Yeop;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.199-205
    • /
    • 2007
  • In this paper, a novel hexagonal-shaped electromagnetic bandgap(EBG) power plane for the suppression of the ground bounce noise(GBN) in high-speed circuits is proposed. The proposed structure consists of hexagonal-shaped unit cells and detoured bridges connecting the unit cells. The hexagonal-shaped unit cells could omni-directionally suppress the GBN in digital circuits. The fabricated power plane's omni-directional -30 dB suppression bandwidth is from 330 MHz to 5.6 GHz. Then the proposed structure suppresses electromagnetic interference(EMI) caused by the GBN within the stopband. As a result, the proposed structure is expected to be conducive solving EMI problem in high-speed circuits.

Application of Constraint Algorithm for High Speed A/D Converters

  • Nguyen, Minh Son;Yeo, Soo-A;Kim, Man-Ho;Kim, Jong-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.3
    • /
    • pp.224-229
    • /
    • 2008
  • In the paper, a new Constraint algorithm is proposed to solve the fan-in problem occurred in the encoding circuitry of an ADC. The Flash ADC architecture uses a Double-Base Number System(DBNS). The DBNS has been known to represent the Multidimensional Logarithmic Number System (MDLNS) used for implementing the multiplier accumulator architecture of FIR filter in Digital Signal Processing (DSP) applications. The authors use the DBNS with the base 2 and 3 in designing ADC encoder circuits, which is called as Double Base Integer Encoder(DBIE). A symmetric map is analyzed first, and then asymmetric map is followed to provide addition ready DBNS for DSP circuitry. The simulation results of the DBIE circuits in 6-bit and 8-bit ADC show the effectiveness of the Constraint algorithm with $0.18{\mu}m$ CMOS technology. The DBIE yields faster processing speed compared to the speed of Fat Tree Encoder (FAT) circuits by 17% at more power consumption by 39%.

  • PDF

A Pipelined 60Ms/s 8-bit Analog to Digital Converter (8-bit 60Ms/s 파이프라인 아날로그 디지털 변환기)

  • 조은상;정강민
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.253-256
    • /
    • 2001
  • This paper introduces the design of high-speed analog- to-digital converter for high-definition TV, camcorders, portable equipments and implemented in a 0.65${\mu}{\textrm}{m}$ CMOS technology. Key circuits developed for low power and high speed A/D converter are a dynamic comparator that consumes no static power, a source follower buffered op amp that achives wide bandwidth using large input devices. The converter achieves low power dissipation of 40-mW at 3.3-V power supply. Measured performance includes 0.53 LSB of INL and 0.48 LSB of DNL while sampling at 60MHz.

  • PDF

An Analysis of Wideband Digital Radio Frequency Signal Reproduction Characteristics (광대역 디지털 고주파 신호 복제 특성 분석)

  • Chae Gyoo-Soo;Lim Joong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.401-406
    • /
    • 2005
  • Digital memory circuits have been developed very fast according to the progress of semiconductor technology. But it was very difficult to memorize a wideband radio frequency signals. Many years ago, an analog frequency memory loop(FML) was used for store of radio frequency signal and the digital radio frequency memory was made according to the development of wideband amplifier and high speed sampler. We present a design of wideband digital radio frequency reproduction device using ladder circuit and the simulation results with respect to the sampling speed in this paper.

  • PDF

EMI Analysis on High Speed Digital Circuite (고속 디지털 회로 PCB 상의 EMI 해석)

  • Kim, Tae-Hong;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.159-164
    • /
    • 2005
  • Recently, it has demanded high-speed digital circuits as information increase. Therefore, electromagnetic characteristics of compact microwave circuit occurred importantly. And, the effect of the imperfect ground plane on the signal integrity and influence of coupling between two parallel lines for high-speed digital transmission line on the printed circuit board is investigated by FDTD simulations in 3-D electromagnetic analysis method. The results of FDTD simulation are compared with the ADS simulation in commercial software, analyzed lumped element of modeling and electromagnetic wave's radiation of slot as frequency. As a consequence, when the slot in the ground plane is under microstrip line, it has much effect on propagation of wave.

A Implementation of Simple Convolution Decoder Using a Temporal Neural Networks

  • Chung, Hee-Tae;Kim, Kyung-Hun
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.177-182
    • /
    • 2003
  • Conventional multilayer feedforward artificial neural networks are very effective in dealing with spatial problems. To deal with problems with time dependency, some kinds of memory have to be built in the processing algorithm. In this paper we show how the newly proposed Serial Input Neuron (SIN) convolutional decoders can be derived. As an example, we derive the SIN decoder for rate code with constraint length 3. The SIN is tested in Gaussian channel and the results are compared to the results of the optimal Viterbi decoder. A SIN approach to decode convolutional codes is presented. No supervision is required. The decoder lends itself to pleasing implementations in hardware and processing codes with high speed in a time. However, the speed of the current circuits may set limits to the codes used. With increasing speeds of the circuits in the future, the proposed technique may become a tempting choice for decoding convolutional coding with long constraint lengths.

Integrated Sliding-Mode Sensorless Driver with Pre-driver and Current Sensing Circuit for Accurate Speed Control of PMSM

  • Heo, Sewan;Oh, Jimin;Kim, Minki;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1154-1164
    • /
    • 2015
  • This paper proposes a fully sensorless driver for a permanent magnet synchronous motor (PMSM) integrated with a digital motor controller and an analog pre-driver, including sensing circuits and estimators. In the motor controller, a position estimator estimates the back electromotive force and rotor position using a sliding-mode observer. In the pre-driver, drivers for the power devices are designed with a level shifter and isolation technique. In addition, a current sensing circuit measures a three-phase current. All of these circuits are integrated in a single chip such that the driver achieves control of the speed with high accuracy. Using an IC fabricated using a $0.18{\mu}m$ BCDMOS process, the performance was verified experimentally. The driver showed stable operation in spite of the variation in speed and load, a similar efficiency near 1% compared to a commercial driver, a low speed error of about 0.1%, and therefore good performance for the PMSM drive.

A Plated Through Hole Model and A Connector Model for HSPICE (HSPICE용 plated through hole (PTH) 모형과 커넥터 모형)

  • 이명호;전용일;전병윤;박권철;강석열
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.7
    • /
    • pp.63-71
    • /
    • 1998
  • Generally, electronic packaging designer uses HSPICE SOFTWARE TOOL to validate electric characteristics of traces layout before layout traces in PCB in hundreds Mb/s high speed digital circuits. We are in need of a plated through hole (PTH) model and a connector model to use HSPICE SOFTWARE TOOL. Those models have not been perfectly defined for HSPICE simulation. In this paper, we define a PTH model and a connector model for HSPICE simulation and discuss application range for these models. Th emodels are analytic models very applicable for HSPICE simulation and are used to analyze electric characteristic of the PTH and the connector in thetraces layout in high speed digital circuit.

  • PDF

Heterodyne Optical Interferometer using Dual Mode Phase Measurement

  • Yim, Noh-Bin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.81-88
    • /
    • 2001
  • We present a new digital phase measuring method for heterodyne optical interferometry, which providers high measuring speed up to 6 m/s with a fine displacement resolution of 0.1 nanometer. The key idea is combining two distinctive digital phase measuring techniques with mutually complementary characteristics to earth other one is counting the Doppler shift frequency counting with 20 MHz beat frequency for high-velocity measurement and the other is the synchronous phase demodulation with 2.0 kHz beat frequency for extremely fine displacement resolution. The two techniques are operated in switching mode in accordance wish the object speed in a synchronized way. Experimental results prove that the proposed dual mode phase measuring scheme is realized with a set of relatively simple electronic circuits of beat frequency shifting, heterodyne phase detection. and low-pass filtering.

  • PDF