• Title/Summary/Keyword: High-Differential Pressure

Search Result 202, Processing Time 0.038 seconds

Study on the High Pressure Combustion Performance Characteristics of the 1st Row Pintle Injector using LOx-Kerosene as Propellant (LOx와 Kerosene을 추진제로 하는 1열 핀틀 분사기의 고압 연소성능 특성에 관한 연구)

  • Kang, Donghyuk;Kim, Jonggyu;Ryu, Chulsung;Ko, Youngsung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.17-25
    • /
    • 2022
  • The pintle injector has many advantages in the key characteristics of a liquid rocket engine, such as combustion stability, combustion efficiency, and wide range of comprehensive thrust control, design and manufacture, and test fired under supercritical conditions. The pintle injector is manufactured with a rectangular, single-row orifice for thrust control and production considerations. In order to verify the combustion performance of the pintle injector and its potential as a commercial injector, the combustion characteristics were analyzed by varying the TMR (Total Momentum Ratio) and BF (Blockage Factor). The result of the hot firing test showed that the heat flux increased as TMR increased, and it confirmed that the characteristic velocity efficiency was more affected by BF than TMR. Suppose a single-row pintle injector with efficiency characteristics insensitive to changes in TMR can achieve high efficiency at low fuel differential pressure conditions. In that case, the variable pintle injector's design flexibility can be increase.

Characteristics of Microcrack Development in Granite of the Mungyeong area in Korea (문경지역에 분포하는 화강암의 미세균열 발달특성)

  • 이병대;장보안;윤현수;이한영;진명식
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.24-33
    • /
    • 1999
  • Differential Strain Analysis (DSA) was performed to examine the characteristics of microcracks for the granites from two sites, Noeunri and Gunggiri. The results of the DSA are taken every 5 MPa for the first 50 MPa, then every 10 MPa to a pressure of 100 MPa, and then every 15 MPa to a pressure of 250 MPa. Differential strain was measured on core samples in three horizontal directions, using $45^{\circ}$ rosette strain gages, and one vertical direction. The gradients of cumulative crack strain curves in one vertical direction and three horizontal directions differed from one another, indicating anisotropic crack development in the sample. The magnitude of vertical cumulative crack strain was the highest, indicating that the microcracks from the studied rock are generally developed in horizontal direction. Under the pressure of 240 Mpa, vertical cumulative crack strains for samples N-1, N-2, G-1, and G-2 were $74{\times}l0^{-6}~820{\times}l0^{-6},\; 190{\times}l0^{-6}~460{\times}l0^{-6},\; 329{\times}l0^{-6}~836{\times}l0^{-6},\; 833{\times}10^{-6}~1,592{\times}l0^{-6}$, respectively. Under the pressure of 25O MPa, volumetric crack strains for Gunggiri and Noeunri ranged from $1,804{\times}10^{-6}\; to\; 3,936{\times}10^{-6}\; and \;from,\; 1, 125{\times}10^{-6}\; to\; 1,457{\times}10^{-6}$, respectively. Therefore, the amount of microcrackes produced were more distributed in Gunggiri than Noeunri. The ratio of a maximum crack strain to a minimum crack strain was calculated to find the orientations between microcracks and the rift plane of the granites. Generally, the ratio has very high values ranging from 2.42 to 3.43, which suggests most microcracks to be intragranular cracks with the regular orientations. These results indicate that the preferred orientations of microcracks in the granites were almost parallel to the rift plane of the granites.

  • PDF

Design and Analysis of High-Speed Unmanned Aerial Vehicle Ground Directional Rectifying Control System

  • Yin, Qiaozhi;Nie, Hong;Wei, Xiaohui;Xu, Kui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.623-640
    • /
    • 2017
  • The full nonlinear equations of an unmanned aerial vehicle ground taxiing mathematical dynamic model are built based on a type of unmanned aerial vehicle data in LMS Virtual.Lab Motion. The flexible landing gear model is considered to make the aircraft ground motion more accurate. The electric braking control system is established in MATLAB/Simulink and the experiment of it verifies that the electric braking model with the pressure sensor is fitted well with the actual braking mechanism and it ensures the braking response speediness. The direction rectification control law combining the differential brake and the rudder with 30% anti-skid brake is built to improve the directional stability. Two other rectifying control laws are demonstrated to compare with the designed control law to verify that the designed control is of high directional stability and high braking efficiency. The lateral displacement increases by 445.45% with poor rectification performance under the only rudder rectifying control relative to the designed control law. The braking distance rises by 36m and the braking frequency increases by 85.71% under the control law without anti-skid brake. Different landing conditions are simulated to verify the good robustness of the designed rectifying control.

Analysis and Design of Mat Foundation for High -Ribe Buildings (초고층 건물의 전면기초(MAT 기초) 해석 및 설계)

  • Hong, Won-Gi;Hwang, Dae-Jin;Gwon, Jang-Hyeok
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.51-70
    • /
    • 1995
  • Types of foundation of high rise buildings are primarily determined by loads transmitted from super structure, soil bearing capacity and available construction technology, The use of deep foundation of the buildings considered in this study due to the fact that rock of enough bearing capacity is not found down until 90~l00m. When a concentration of high soil pressure must be distributed over the entire building area, when small soft soil areas must be bridged, and when compressible strata are located at a shallow depth, mat foundation may be useful in order to have settlement and differential settlement of variable soils be minimized. The concept of mat foundation will also demonstrate some difficulties of applications if the load bearing demand directly carried down to the load -bearing strata exceeds the load -bearing capacity. This paper introduces both the analysis and design of mat type foundation for high rise buildings as well as the method-ology of modelling of the soil foundation, especially, engineered to redistribute the stress exceeding the soil bearing capacity. This process will result in the wide spread of stresses over the entire building foundation.

  • PDF

Heat Dissipation Trends in Semiconductors and Electronic Packaging (반도체 및 전자패키지의 방열기술 동향)

  • S.H. Moon;K.S. Choi;Y.S. Eom;H.G. Yun;J.H. Joo;G.M. Choi;J.H. Shin
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

Development and application analysis of high-energy neutron radiation shielding materials from tungsten boron polyethylene

  • Qiankun Shao;Qingjun Zhu;Yuling Wang;Shaobao Kuang;Jie Bao;Songlin Liu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2153-2162
    • /
    • 2024
  • The purpose of this study is to develop a high-energy neutron shielding material applied in proton therapy environment. Composite shielding material consisting of 10.00 wt% boron carbide particles (B4C), 13.64 wt% surface-modified cross-linked polyethylene (PE), and 76.36 wt% tungsten particles were fabricated by hot-pressure sintering method, where the optimal ratio of the composite is determined by the shielding effect under the neutron field generated in typical proton therapy environment. The results of Differential Scanning Calorimetry measurements (DSC) and tensile experiment show that the composite has good thermal and mechanical properties. In addition, the high energy-neutron shielding performance of the developed material was evaluated using cyclotron proton accelerator with 100 MeV proton. The simulation shows a 99.99% decrease in fast neutron injection after 44 cm shielding, and the experiment result show a 99.70% decrease. Finally, the shielding effect of replacing part of the shielding material of the proton therapy hall with the developed material was simulated, and the results showed that the total neutron injection decreased to 0.99‰ and the neutron dose reduced to 1.10‰ before the enhanced shielding. In summary, the developed material is expected to serve as a shielding enhancement material in the proton therapy environment.

Rheological characterization of thermoplasticized injectable gutta percha and resilon (열연화주입형 gutta percha와 resilon의 유변학적 특성)

  • Chang, Ju-Hea;Baek, Seung-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.377-384
    • /
    • 2011
  • Objectives: The purpose of this study was to observe the change in the viscoelastic properties of thermoplasticized injectable root canal filling materials as a function of temperature and to compare the handling characteristics of these materials. Materials and Methods: Three commercial gutta perchas and Resilon (Pentron Clinical Technologies) in a pellet form were heated in the Obtura-II system (Obtura Spartan) at $140^{\circ}C$ and $200^{\circ}C$, and the extrusion temperature of the thermoplasticized materials was measured. The viscoelastic properties of the materials as a function of temperature were evaluated using a rheometer. The elastic modulus G', viscous modulus G", loss tangent tan${\delta}$, and complex viscosity ${\eta}^*$ were determined. The phase transition temperature was determined by both the rheometer and a differential scanning calorimeter (DSC). The consistency of the materials was compared under compacting pressure at $60^{\circ}C$ and $40^{\circ}C$ by a squeeze test. Results: The three gutta perchas had dissimilar profiles in viscoelastic properties with varying temperature. The phase transition of softened materials into solidification occurred at $40^{\circ}C$ to $50^{\circ}C$, and the onset temperatures obtained by a rheometer and a DSC were similar to each other. The onset temperature of phase transition and the consistency upon compaction pressure were different among the materials (p < 0.05). Resilon had a rheologically similar pattern to the gutta perchas, and was featured between high and low-flow gutta perchas. Conclusions: The rheological characteristics of the thermoplasticized root canal filling materials changed under a cooling process. The dissimilar viscoelastic properties among the materials require different handling characteristics during an injecting and compacting procedure.

Hydrodynamic Characteristics of Fine Powders in the Conical Powder-Particle Fluidized Beds (원추형 분립유동층에서 미세 분체의 수력학적 특성)

  • Lee Dong Hyun;Shin Moon Kwon;Kim Eun Mi;Son Seong Yong;Park Byung Sub;Han Gui Young;Yoon Ki June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.310-313
    • /
    • 2005
  • The conical fluidizing system of a binary mixture of Geldart C powders and Geldart A particles was defined as the conical powder-particle fluidized bed. We used a cold conical powder-particle fluidized bed model having a 0.104m-I.D. and 0.6m-high with an apex angle of $10^{\circ}$ for fluidization of a binary powder-particle mixture of 50 $vol\%$ fine carbon black powders (HI-900L, Korea Carbon Black Co.) and coarse alumina particles $(90{\mu}m)$ under different superficial gas velocities (0-0.1 m/s). The differential bed pressure drop increases with increasing gas velocity, and it goes from zero to a maximum value with increasing or decreasing gas velocity. In the conical fluidized beds of fine powders, demarcation velocities of the partial fluidization, full fluidization, partial defluidization was not observed.

  • PDF

A Study on the Evaporator Shape for the Heat Transfer Performance of Fuel Cell Reformer (연료전지 개질기용 증발기 열교환 성능을 위한 증발기 형상에 관한 연구)

  • Suh, Ho-Cheol;Kim, Kyu-Jun;Noh, Hyung-Chul;Park, Kyoung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.108-114
    • /
    • 2011
  • Steam reformer was organized with steam reforming process and CO removing process. The steam reforming process needed high temperature, 600~900 $^{\circ}C$, for catalytic-reaction which was extract of hydrogen from steam and hydrocarbon. The effects of the evaporator configuration on its heat transfer characteristics were investigated both experimentally and numerically to pursue the miniaturization. In this study, three configurations were considered where the different structures were tested; empty, embossing and mesh filled. For the comparison of heat transfer performance of shape evaporator disk, numerical analysis using SC-Tetra code and experiment were carried out. In case of reformer system design, it should be considered heat transfer rate, differential pressure and fluid flow direction.

Performance Test and Evaluations of a MEMS Microphone for the Hearing Impaired

  • Kwak, Jun-Hyuk;Kang, Hanmi;Lee, YoungHwa;Jung, Youngdo;Kim, Jin-Hwan;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.326-331
    • /
    • 2014
  • In this study, a MEMS microphone that uses $Si_3N_4$ as the vibration membrane was produced for application as an auditory device using a sound visualization technique (sound visualization) for the hearing impaired. Two sheets of 6-inch silicon wafer were each fabricated into a vibration membrane and back plate, after which, wafer bonding was performed. A certain amount of charge was created between the bonded vibration membrane and the back plate electrodes, and a MEMS microphone that functioned through the capacitive method that uses change in such charge was fabricated. In order to evaluate the characteristics of the prepared MEMS microphone, the frequency flatness, frequency response, properties of phase between samples, and directivity according to the direction of sound source were analyzed. The MEMS microphone showed excellent flatness per frequency in the audio frequency (100 Hz-10 kHz) and a high response of at least -42 dB (sound pressure level). Further, a stable differential phase between the samples of within -3 dB was observed between 100 Hz-6 kHz. In particular, excellent omnidirectional properties were demonstrated in the frequency range of 125 Hz-4 kHz.