• Title/Summary/Keyword: High-Dielectric

Search Result 2,211, Processing Time 0.036 seconds

Device and Circuit Performance Issues with Deeply Scaled High-K MOS Transistors

  • Rao, V. Ramgopal;Mohapatra, Nihar R.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.52-62
    • /
    • 2004
  • In this paper we look at the effect of Fringe-Enhanced-Barrier-lowering (FEBL) for high-K dielectric MOSFETs and the dependence of FEBL on various technological parameters (spacer dielectrics, overlap length, dielectric stack, S/D junction depth and dielectric thickness). We show that FEBL needs to be contained in order to maintain the performance advantage with scaled high-K dielectric MOSFETs. The degradation in high-K dielectric MOSFETs is also identified as due to the additional coupling between the drain-to-source that occurs through the gate insulator, when the gate dielectric constant is significantly higher than the silicon dielectric constant. The technology parameters required to minimize the coupling through the high-K dielectric are identified. It is also shown that gate dielectric stack with a low-K material as bottom layer (very thin $SiO_2$ or oxy-nitride) will be helpful in minimizing FEBL. The circuit performance issues with high-K MOS transistors are also analyzed in this paper. An optimum range of values for the dielectric constant has been identified from the delay and the energy dissipation point of view. The dependence of the optimum K for different technology generations has been discussed. Circuit models for the parasitic capacitances in high-K transistors, by incorporating the fringing effects, have been presented.

Effects of Dielectric Layer Thickness and Electrode Structures on High Xe AC-PDP (High Xe AC PDP에서 전극구조와 유전체 두께에 따른 방전 특성 분석)

  • Heo, Jun;Kim, Yun-Gi;Kim, Dong-Hyun;Lee, Hea-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.237-242
    • /
    • 2012
  • In this paper, we investigated effects of ITO electrode geometry and dielectric layer thickness on the discharge Characteristic of AC PDP. As the dielectric thickness is decreased ($30{\sim}12{\mu}m$), firing and sustain voltage is decreased. Luminance and discharge power increase with decreasing dielectric layer thickness because of increasing capacitance between plasma and electrodes. Reactive power decreases with dielectric thickness due to reduced capacitance between sustain electrodes. For the high Xe test panel with small ITO electrode, luminous efficacy as well as luminance increase with decreasing dielectric layer thickness. This result suggest that high power density and small plasma volume is beneficial for high efficacy discharge.

High Energy Density Dielectric Ceramics Capacitors by Aerosol Deposition (상온 분사 공정을 이용하여 제조한 고에너지 밀도 세라믹 유전체 커패시터)

  • Hyunseok Song;Geon Lee;Jiwon Ye;Ji Yun Jung;Dae-Yong Jeong;Jungho Ryu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.119-132
    • /
    • 2024
  • Dielectric ceramic capacitors present high output power density due to the fast energy charge and discharge nature of dielectric polarization. By forming dense ceramic films with nano-grains through the Aerosol Deposition (AD) process, dielectric ceramic capacitors can have high dielectric breakdown strength, high energy storage density, and leading to high power density. Dielectric capacitors fabricated by AD process are expected to meet the increasing demand in applications that require not only high energy density but also high power output in a short time. This article reviews the recent progress on the dielectric ceramic capacitors with improved energy storage properties through AD process, including energy storage capacitors based on both leadbased and lead-free dielectric ceramics.

Development of the Dielectric sensor for the Cure monitoring of the high temperature Composites (고온 복합재료의 경화 모니터링을 위한 유전센서의 개발)

  • 김일영;최진경;최진호;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.22-28
    • /
    • 2000
  • The fiber reinforced composite materials is widely used in aircraft, space structures and robot arms because of high specific strength and high specific modulus. The on-line cure monitoring during the cure process of the composite materials has become an important research area for the better quality and productivity. In this paper, the dielectric circuit of the wheatstone bridge type for measuring the dissipation factor was designed and manufactured. Also, the dielectric sensor for the cure monitoring of the high temperature composites was developed. The residual thermal stresses of the dielectric sensor were analyzed by the finite element method and its dielectric characteristics under high temperature were evaluated. The on-line cure monitoring of the BMI resin was performed using the wheatstone bridge type circuit and developed high-temperature dielectric sensor.

  • PDF

The AC, DC Dielectric Breakdown Characteristics according to Dielectric Thickness and Inner Electrode Pattern of High Voltage Multilayer Ceramic Capacitor (고압 적층 칩 캐패시터의 유전체 두께 및 내부전극 형상에 따른 AC, DC 절연 파괴 특성)

  • Yoon, Jung-Rag;Kim, Min-Kee;Lee, Seog-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1118-1123
    • /
    • 2008
  • High voltage multilayer ceramic capacitors (MLCCs) are classified into two classes-those for temperature compensation (class I) and high dielectric constant materials (class II). We manufactured high voltage MLCC with temperature coefficient characteristics of C0G and X7R and studied the characteristics of electric properties. Also we studied the characteristics of dielectric breakdown voltage (V) as the variation of thickness in the green sheet and how to pattern the internal electrodes. The dielectric breakdown by electric field was caused by defects in the dielectric materials and dielectric/electrode interface, so the dielectric thickness increased, the withstanding voltage per unit (E) thickness decreased. To overcome this problem, we selected the special design like as floating electrode and this design affected the increasing breakdown voltage(V) and realized the constant withstanding voltage per unit thickness(E). From these results, high voltage application of MLCCs can be expanded and the rated voltage can also be develop.

Dielectric Breakdown Voltage and Dielectric Properties of High Voltage Mutilayer Ceramic Capacitor with C0G Temperature Coefficient Characteristics (C0G 온도계수 특성을 가지는 고압용 적층 칩 캐패시티의 유전 및 내전압 특성)

  • Yoon, Jung-Rag;Woo, Byong-Chul;Chung, Tae-Serk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • High voltage MLCCs with C0G temperature coefficient characteristics could apply DC-DC invertor were investigated for its dielectric properties. Also we manufactured MLCC through various process and studied the characteristics of dielectric break down voltage [BDV] and dielectric property as the variation of thickness in the green sheet and how to pattern the internal electrode. As the thickness of green sheet is increase, the dielectric BDV per unit thickness is decreased. But as the pattern of internal electrodes were floated we could manufacture the high voltage MLCC maintained its dielectric BDV a unit.

High-Performance Amorphous Indium-Gallium Zinc Oxide Thin-Film Transistors with Inorganic/Organic Double Layer Gate Dielectric

  • Lee, Tae-Ho;Kim, Jin-U;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.465-465
    • /
    • 2013
  • Inorganic 물질인 SiO2 dielectric 위에 organic dielectric PVP (4-vinyphenol)를 spin coating으로 올려, inorganic/organic dielectric 형태의 double layer구조로 High-performance amorphous indiumgallium zinc oxide thin-film transistors (IGZO TFT)를 제작하여 보았다. SiO2 dielectric을 buffer layer로 80 nm, PVP는 10Wt% 400 nm로 구성하였으며, 200 nm single SiO2 dielectric과 동일한 수준의 leakage current 특성을 MIM Capacitor 구조를 통해서 확인할 수 있었다. 이 소자의 장점은 용액공정의 도입으로 공정 시간의 단축 및 원가 절감을 이룰 수 있으며, dielectric과 channel 사이의 균일한 interface의 형성으로 interface trap 개선 및 Yield 향상의 장점을 갖는다. 우리는 실험을 통해서 SiO2 buffer layer가 수직 electric field에 의한 leakage current을 제어하고, PVP dielectric은 interface를 개선하는 것을 확인하였다. Vth의 negative shift 및 slope의 향상으로 구동전압이 줄어들고, 균일한 I-V Curve 형성을 통해서 Process Yield의 향상을 확인하였다.

  • PDF

The Effect of Ion Contribution to the Dielectric Properties of $\beta$-PVDF Thin Film Fabricated by Vapor Deposition Method (진공증착법으로 제조된 $\beta$-PVDF 박막의 유전 특성에 미치는 이온의 영향)

  • 박수홍;김종택;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1007-1013
    • /
    • 1998
  • In this paper, the dielectric properties of fabricated Polyvinylidene fluoride(PVDF, $PVF_2$) thin film with substrate temperature from 30 to at vapor deposition. The dielectric properties of PVDF thin film had been studied in the frequency range from 10Hz to 4MHz at measuring temperature between 20 and $100^{/circ}C$. The anomalous increasing in dielectric constant and dielectric loss at low frequencies and high temperature was described for PVDF thin film containing ion impurities. In particularly, ion mobility of fabricated PVDF thin film at substrate temperature at $30^{/circ}C$ decrease from $2\times10^{-5}\;to\;3.07$\times10^{-7}cm^2/V.s$ On the other hand, ion density increase abruptly from 1.49\times$$10^{13}$ to $1.5\times$10^{16}$cm^{-3}$ In spite of decreasing of ion mobility, dielectric constants and dielectric loss for PVDF thin film increase rapidly with decreasing frequency and high temperature. It was concluded that the dielectric constants and dielectric loss was related to ion density than to ion mobility at low frequency and high temperatures.

  • PDF

A Study on the Performance Test and Manufacture of the Dielectric Sensor for the Cure Monitoring of the High Temperature Composites (고온 복합재료의 경화 모니터링을 위한 고온 유전센서의 제작 및 성능평가에 관한 연구)

  • 김일영;최진호;이대길
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.30-38
    • /
    • 2001
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the on-line cure monitoring during the cure process of the composite materials has become an important research area for the better quality and productivity. In this paper, the dielectric circuit of the Wheatstone bridge type for measuring the dissipation factor during cure of thermsetting resin matrix composite materials was designed and manufactured. Also, the dielectric sensor for the cure monitoring of high temperature cure composites was developed and tested. The residual thermal stresses of the dielectric sensor during high temperature cure were analyzed by the finite element method and its dielectric characteristics at high temperature cure were analyzed by the finite element method and its dielectric characteristics at high temperature were evaluated. The on-line cure monitoring of the BMI(Bismaleimide) resin was performed using the developed Wheatstone bridge type circuit and the high-temperature dielectric sensor.

  • PDF

Dependence of Ozone Generation in a Micro Dielectric Barrier Discharge on Dielectric Material and Micro Gap Length

  • Sakoda, Tatsuya;Sung, Youl-Moon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.201-206
    • /
    • 2004
  • In order to investigate the optimum conditions for the effective ozone formation in a dielectric barrier discharge, measurements of ozone concentration were carried out for various conditions such as the gap length, the dielectric material and the operating gas. It was found that the optimum discharge conditions differed exceedingly in the types of operating gases and dielectric materials. In dry air, dielectric material with low dielectric constant and thermal conductivity, which might contribute to the restriction of the gas temperature rise in the discharge region, proved effective in obtaining both high ozone yield and concentration. The optimum gap length was considered to be in the range of 600-800 mm. In oxygen, using a quartz glass disk as a dielectric material, the required condition to obtain the high ozone yield and concentration was expanded.