• 제목/요약/키워드: High volume fly ash concrete

검색결과 108건 처리시간 0.019초

High-Volume 플라이애쉬 콘크리트의 건조수축특성 (Drying Shrinkage of High-Volume Fly Ash Concrete)

  • 최석균;이광명;이진용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.195-198
    • /
    • 1999
  • Fly ash is the most common artificial pozzolan, which is a material precipitated electrostatically from the exhaust gases of coal-fired power stations. Fly ash can be used as the supplementary material as well as the material for high performance concrete and hence, the development of high-volume fly ash concrete is imperative. In this study, the characteristics of drying shrinkage of high volume fly ash concrete is investigated. It is found from test results that as the replaced amount of fly ash in concrete is increased, drying shrinkage of concrete is reduced.

  • PDF

플라이애시를 대량 사용한 콘크리트의 배합설계를 위한 기초적 연구 (A Fundamental Study on the Mix Design in High Volume Fly-Ash Concrete)

  • 심재형;김재환;최희용;강석표;최세진;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.641-646
    • /
    • 2001
  • Generally, when Fly-Ash was used as replacement material of cement in concrete, it might occur retardation of setting and hardening. So, it is unable to use a large amount of Fly-Ash as replacement for cement. However, if it is used as replacement material of fine aggregate in concrete, we can use a large amount of Fly-Ash and settle a problem of natural-aggregate exhaustion. Furthermore, engineering properties of High Volume Fly-Ash Concrete Is better than that of plain concrete But, the larger Fly-Ash is replaced, the more fluidity of High Volume Fly-Ash Concrete decrease, because porous organization of Fly-Ash adsorb water and Superplasticizer. In this study, after appending additional water to High Volume Fly-Ash Concrete in proportion to weight of Fly-Ash, we intend to find proper ratio which doesn't affect strength and satisfy fluidity As a result of this study, it was found that fluidity of mortar with 25~28 percentage of additional water was satisfied with fluidity of plain mortar, and compressive strength of that was similar to plain mortar's

  • PDF

High Volume 플라이애쉬 콘크리트의 내구적 특성 연구 (A Study on the Properties of High Volume FlyAsh Concrete)

  • 이진용;손해원;최수홍;정은경;조현수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.203-206
    • /
    • 1999
  • An experimental study is carried out to investigate the characteristics of concrete containing high volume fly ash. The compressive and tensile strength of fly ash concrete is slightly lower than those of ordinary concrete between 7and 28 days, however, the long-term compressive strength is significantly higher at 180 days. In durability, the high volume fly ash concretes are generally higher resistance of freeze and thaw and lowe chloride penetration, however, the depth of carbonation is increased with increasing fly ash content.

  • PDF

플라이애쉬를 대량 사용한 고강도 콘크리트에 관한 실험적 연구 (The Experimental Study on High Strength Concrete of High Volume Fly-Ash)

  • 이동하;서동훈;전판근;백민수;임남기;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.275-280
    • /
    • 2002
  • To study of high volume fly -ash concrete replace cement and fine aggregate together. Proportion consideration economy cost and performance improve replacement high volume fly-ash. Experimentation study of high-strength which cement about fly-ash replacement maximum 50%Flash concrete tested slump, air contest, setting and Hardening concrete tested day of age 1, 3, 7, 28, 91 compression strength in underwater curing. Purpose of study is consultation materials in field that variety of fly ash replacement concrete mix proportion comparison and valuation.

  • PDF

Improvement of bond strength and durability of concrete incorporating high volumes of class F fly ash

  • Wu, Chung-Hao;Chen, Chien-Jung;Lin, Yu-Feng;Lin, Shu-Ken
    • Advances in concrete construction
    • /
    • 제12권5호
    • /
    • pp.367-375
    • /
    • 2021
  • This study experimentally investigated the improvement of bond strength and durability of concrete containing high volume fly ash. Concrete mixtures made with 0%, 25% and 60% replacement of cement with class F fly ash were prepared. Water-binder ratios ranged from 0.28 to 0.72. The compressive, flexural and pullout bond strength, the resistance to chloride-ion penetration, and the water permeability of concrete were measured and presented. Test results indicate that except for the concretes at early ages, the mechanical properties, bond strength, and the durability-related chloride-ion permeability and water permeability of concrete containing high volume (60% cement replacement) fly ash were obviously superior to the concrete without fly ash at later ages of beyond 56 days. The enhanced bond strength for the high volume fly-ash concrete either with or without steel confinement is a significant finding which might be valuable for the structural application.

플라이애시 콘크리트의 수화발열 특성과 압축강도 특성에 관한 실험적 연구 (An Experimental Study on Hydration Heat and Strength Properties Concrete with High Volume Fly-Ash)

  • 김우상;김광기;백민수;김우재;정재영;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.67-71
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash at the same time was used. It was used that the adiabatic temperature rise of concrete about the mass member which bad been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive streneth's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the tine to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

  • PDF

플라이애시를 대량 사용한 콘크리트의 수화열특성 및 강도특성에 관한 연구 (A Study on Hydration Heat Properties and Strength Properties of High Volume Fly-Ash Concrete)

  • 백민수;이영도;정상진
    • 한국건축시공학회지
    • /
    • 제3권3호
    • /
    • pp.135-142
    • /
    • 2003
  • This study is for the great quantity use of fly-ash. For the producing of high volume concrete from the use of fly-ash, the method of replacement between bonding agents and fine aggregate by fly-ash was used at the same time. It was used that the adiabatic temperature rise of concrete about the mass member which had been produced by the method that was mentioned before, and the hydration heat of the core test pieces in concrete was measured. Also the core test pieces which were replaced with fly-ash was studied by the compressive strength's comparison between standard care test pieces and core test pieces. In the case of mass test pieces, hydration heat and the time to reach the highest temperature were decreased by an increase in replaced fly-ash's amounts of concrete. In addition, among the test pieces having the same amounts of concrete, the test pieces having more replaced amounts of fly-ash's fine aggregate showed higher hydration heat and the increased time to reach the highest temperature. Compressive strength was also increased by hydration heat's decrease according to fly-ash replacement. Replacement of fly-ash was more effective in high temperature environment.

플라이애시 치환율 및 압축강도에 따른 콘크리트의 부착 거동 (Bond Behavior of Concrete According to Replacement Ratio of Fly Ash and Compressive Strength of Concrete)

  • 이형집;서정인;유성원
    • 한국건설순환자원학회논문집
    • /
    • 제4권1호
    • /
    • pp.19-24
    • /
    • 2016
  • 현재까지 하이볼륨 플라이애시 콘크리트의 연구는 슬럼프, 강도 및 내구성 등 기본적인 재 료성질에 대해서 주로 수행되어 왔다. 그러나 하이볼륨 플라이애시 콘크리트의 구조부재에의 적용을 위해서는 철근의 사용이 필수적이므로 그 부착특성에 대한 연구가 매우 중요하다고 할 수 있으나, 현재까지는 하이볼륨 플라이애시 콘크리트를 구조부재에 적용하기 위한 정확한 기준이나 콘크리트와 철근의 부착 특성에 관한 연구가 부족한 실정이다. 이 논문에서는 직접 인발 시험을 수행하여 하이볼륨 플라이애시 시멘트 콘크리트의 부착특성을 파악하고, 실험결과와 기존 연구결과를 비교하여 하이볼륨 플라이애시 시멘트 콘크리트의 부착특성을 평가하였다. 실험결과에 의하면, 하이볼륨 플라이애시 시멘트 콘크리트의 부착거동은 일반콘크리트와 유사하게 거동하는 것으로 나타났다. 또한 기존 연구결과와 비교하면, 하이볼륨 플라이애시 콘크리트의 부착강도는 묻힘길이가 클수록 부착강도를 과소평가하는 것으로 나타났다.

하이 볼륨 플라이애쉬 철근콘크리트 보의 전단거동 실험 (Experiment of Shear Behavior of Reinforced Concrete Beams with High Volume Fly Ash)

  • 유성원;이형집
    • 콘크리트학회논문집
    • /
    • 제26권4호
    • /
    • pp.525-532
    • /
    • 2014
  • 화력발전소에서 발생되는 플라이애쉬는 콘크리트의 첨가재로 사용되는 것이 석탄회 재활용 방안 중 최선으로 알려져 있다. 이러한 석탄회는 최근 더 이상 매립이 불가능하여 콘크리트에 다량 첨가가 시도되고 있다. 그럼에도 불구하고 현재까지 하이볼륨 플라이애쉬(high volume fly ash: HVFA) 시멘트 콘크리트의 연구분야는 주로 재료적인 분야에 대해서만 수행되어지고 있는 실정이다. 그러나 하이볼륨 플라이애쉬 시멘트 콘크리트의 구조재료로의 적용을 위해서는 구조 부재 전단거동 등에 대한 연구가 필수적이다. 이를 위하여 이 논문에서는 플라이애쉬 치환율 0, 35% 및 50%, 압축강도 20, 40 및 60 MPa 그리고 전단철근량 3수준을 실험변수로 하여 플라이애쉬 시멘트 철근콘크리트 보 27개를 제작하여 이들의 전단거동을 실험적으로 평가하였다. 실험 결과에 의하면 플라이애쉬를 첨가하지 않은 일반 콘크리트(FA=0%)와 35%, 50% 플라이애쉬 시멘트 콘크리트 부재의 전단거동은 크게 차이나지 않음을 알 수 있었다.

플라이애쉬 치환율이 높은 콘크리트의 압축강도 발현 특성 (The Characteristic of Strength Development of High Volume Fly-Ash Concrete)

  • 박찬규;이승훈;김한준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2007년도 추계 학술논문 발표대회
    • /
    • pp.67-70
    • /
    • 2007
  • In this study, the characteristic of strength development of high volume fly ash concrete(HVFAC) was experimentally investigated. The production of one ton of portland cement releases about 0.87ton of CO2 into the atmosphere. HVFAC is an emerging material technology and is environmentally friendly because of its reduced use of portland cement, reduced CO2 emissions. For this purpose, two levels of W/B were selected. Seven levels of fly ash replacement ratios and two levels of silica fume replacement ratios were adopted. In the concrete mix, the water content of 125kg/m3 was used, which is less than that of usual water content. As a result, it was observed that the slump of concrete was increased with the increasing fly ash replacement ratio and when the silica fume was incorporated into the concrete, the slump was significantly decreased at the same condition. It appeared that the compressive strength gradually decreased with increasing fly ash replacement ratio at the early age, but the difference of strength up to replacement ratio of 50% was little at the age of 91 days because of the pozzolanic reaction of fly ash.

  • PDF