• Title/Summary/Keyword: High voltage power semiconductor

Search Result 440, Processing Time 0.033 seconds

Design and Process Development in High Voltage Insulated Gate Bipolar Transistors (IGBTs)

  • Kim, Su-Seong
    • The Magazine of the IEIE
    • /
    • v.35 no.7
    • /
    • pp.57-71
    • /
    • 2008
  • The last decade has witnessed great improvements in power semiconductor devices thanks to the advanced design and process, which have made it possible to significantly improve the electrical performances of electronic systems while simultaneously reducing their site, weight and perhaps most importantly reducing their cost. Among the power semiconductor devices, IGBT will be a key semiconductor component for power industry since it has a huge potential to cover large areas of power electronics from small home appliances to heavy industries. Currently, only a few limited power semiconductor manufacturers supply most of the industrial consumptions of power IGBT and its modules. Therefore, a large portion of technology in the power industry is dependent on other advanced countries. In this regard, to independently build power IGBT devices and the relevant power module technology, Korean government initiated a new 5-year project 'Power IT,' which also aimed at booming the business of the power semiconductor and the allied industries. With the success of this power IT project, it is expected that the power semiconductor technology will be a basis to foster the high power semiconductor industry and moreover, there will be more innovative developments in the Korea region and globally Also, forming the channel between the customers and suppliers, it is possible to effectively develop the customized power products, which could strengthen the competitiveness of Korean power industry. Furthermore, the power industry including semiconductor manufacturers will be technologically self-supporting and be able to obtain good business opportunities, and eventually increase the share in the growing power semiconductor market, which could be positioned as a major industry in Korea.

  • PDF

A Novel Multi-Level Inverter Configuration for High Voltage Conversion System

  • Suh, Bum-Seok;Lee, Yo-Han;Hyun, Dong-Seok
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.109-118
    • /
    • 1996
  • This paper deals with a new multi-level high voltage source inverter with GTO Thyristors. Recently, a multi-level approach seems to be the best suited for implementing high voltage conversion systems because it leads to harmonic reduction and deals with safe high power conversion systems independent of the dynamic switching characteristics of each power semiconductor device. A conventional multi-level inverter has some problems; voltage unbalance between DC-link capacitors and larger blocking voltage across the inner switching devices. To solve these problems, the novel multi-level inverter structure is proposed.

  • PDF

Resonant Step-Down DC/DC Converter to Reduce Voltage Stresses of Motor Driving Inverter under 3-phase AC Utility Line Condition (3상 전원 조건의 모터 구동 인버터 내압 저감을 위한 공진 강압형 DC/DC 컨버터)

  • Kang, Kyung-Soo;Kim, Sang-Eon;Lee, Joon-Hwan;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.391-398
    • /
    • 2014
  • This paper presents a resonant step-down DC/DC converter to reduce the voltage stresses of a 3-phase inverter module under the three-phase AC utility line condition. Under this condition, a conventional 3-phase inverter module suffers from high voltage stresses as a result of the high rectified DC link voltage; hence, a high-cost high-voltage-rating inverter module must be used. However, using the proposed converter, a low-cost low-voltage-rating inverter module may be adopted to drive the motor even under the 3-phase AC line condition. The proposed converter, which can be realized with small size inductor and low-voltage-rating semiconductor devices, operates at a high-efficiency mode because of the zero-current switching operations of all the semiconductor devices. The operational principles are explained and a design example is provided in the study. Experimental results demonstrate the validity of the proposed converter.

A Novel 800mV Beta-Multiplier Reference Current Source Circuit for Low-Power Low-Voltage Mixed-Mode Systems (저전압 저전력 혼성신호 시스템 설계를 위한 800mV 기준전류원 회로의 설계)

  • Kwon, Oh-Jun;Woo, Son-Bo;Kim, Kyeong-Rok;Kwack, Kae-Dal
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.585-586
    • /
    • 2008
  • In this paper, a novel beta-multiplier reference current source circuit for the 800mV power-supply voltage is presented. In order to cope with the narrow input common-mode range of the OpAmp in the reference circuit, shunt resistive voltage divider branches were deployed. High gain OpAmp was designed to compensate intrinsic low output resistance of the MOS transistors. The proposed reference circuit was designed in a standard 0.18um CMOS process with nominal Vth of 420mV and -450mV for nMOS and pMOS transistor respectively. The total power consumption including OpAmp is less than 50uW.

  • PDF

Study on Electric Characteristics of IGBT Having P Region Under Trench Gate (Trench Gate 하단 P-영역을 갖는 IGBT의 전기적 특성에 관한 연구)

  • Ann, Byoung Sub;Yuek, Jinkeoung;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.361-365
    • /
    • 2019
  • Although there is no strict definition of a power semiconductor device, a general description is a semiconductor that has capability to control more than 1 W of electricity. Integrated gate bipolar transistors (IGBTs), which are power semiconductors, are widely used in voltage ranges above 300 V and are especially popular in high-efficiency, high-speed power systems. In this paper, the size of the gate was adjusted to test the variation in the yield voltage characteristics by measuring the electric field concentration under the trench gate. After the experiment Synopsys' TCAD was used to analyze the efficiency of threshold voltage, on-state voltage drop, and breakdown voltage by measuring the P- region and its size under the gate.

A GaAs Power MESFET Operating at 3.3V Drain Voltage for Digital Hand-Held Phone

  • Lee, Jong-Lam;Kim, Hae-Cheon;Mun, Jae-Kyung;Kwon, Oh-Seung;Lee, Jae-Jin;Hwang, In-Duk;Park, Hyung-Moo
    • ETRI Journal
    • /
    • v.16 no.4
    • /
    • pp.1-11
    • /
    • 1995
  • A GaAs power metal semiconductor field effect transistor (MESFET) operating at a voltage as low as 3.3V has been developed with the best performance for digital handheld phone. The device has been fabricated on an epitaxial layer with a low-high doped structure grown by molecular beam epitaxy. The MESFET, fabricated using $0.8{\mu}m$ design rule, showed a maximum drain current density of 330 mA/mm at $V_{gs}$ =0.5V and a gate-to-drain breakdown volt-age of 28 V. The MESFET tested at a 3.3 V drain bias and a 900 MHz operation frequency displayed an output power of 32.5-dBm and a power added efficiency of 68%. The associate power gain at 20 dBm input power and the linear gain were 12.5dB and 16.5dB, respectively. Two tone testing measured at 900.00MHz and 900.03MHz showed that a third-order intercept point is 49.5 dBm. The power MESFET developed in this work is expected to be useful as a power amplifying device for digital hand-held phone because the high linear gain can deliver a high power added efficiency in the linear operation region of output power and the high third-order intercept point can reduce the third-order intermodulation.

  • PDF

Artificial Neural Network Modeling for Photovoltaic Module Under Arbitrary Environmental Conditions (랜덤 환경조건 기반의 태양광 모듈 인공신경망 모델링)

  • Baek, Jihye;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.110-115
    • /
    • 2022
  • Accurate current-voltage modeling of solar cell systems plays an important role in power prediction. Solar cells have nonlinear characteristics that are sensitive to environmental conditions such as temperature and irradiance. In this paper, the output characteristics of photovoltaic module are accurately predicted by combining the artificial neural network and physical model. In order to estimate the performance of PV module under varying environments, the artificial neural network model is trained with randomly generated temperature and irradiance data. With the use of proposed model, the current-voltage and power-voltage characteristics under real environments can be predicted with high accuracy.

A High Voltage Poorer Supply for Electrostatic Precipitator with Superimposing Voltage Pulse on DC Source (펄스 및 직류 중첩형 전기집진기용 고전압 전원장치 개발 연구)

  • Kim, Jong-Soo;Rim, Geun-Hie;Lee, Sung-Jin;Kim, Seung-Min;Cho, Chang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.624-630
    • /
    • 2001
  • The trend of the regulations on environmental issues are getting tight. Responding to this trend new technologies such as moving electrodes, wide pitch and pulsed power supply are also introduced in the electrostatic precipitator(EP) systems. The introduction of wide pitch and moving electrodes enhances the system performance of the EPs by improving air-flow and by improving the ash reentrainment on rapping. The power supplies for the EPs developed up to date include thyristor-based dc or intermittent type, SMPS(switching mode power supply) type and the pulsed-power supply type. The use of the pulsed ones is known to improve dust-collecting efficiency of high resistivity ash and reduces back corona occurrence in the collecting plate. There are two kinds of pulsed-power supplies; one with pulsed transformers and the other with direct dc switching devices. The latter uses rotary spark gap switches or semiconductor switches. Both have the merits and demerits: the spark gap switches are simple and robust but has short life time, hence, high maintenance cost, whereas the semiconductor switches have long life time but are costly. In this study, A high voltage power supply with superimposing voltage pulse on dc source was developed for EPs. This study describes circuit topology, operating principle of the scheme, and analysis of experimental results on Dong-Hae Power Plant. The pulsed power supply consists of a variable dc power supply with ratings of 60kV, 800mA and pulse generator which is made of high voltage thyristor-diode switch strings, an LC resonant tank and a blocking inductor. The pulse generator generates variable pulse-voltage up to 70kV using a high frequency resonant inverter with a variable dc source. Two prototypes were built and tested on 250MW DongHae power plant to verify the possibility of the commercial use and the normal operation in the transient states.

  • PDF

A Conduction Band Control AC-DC Buck Converter for a High Efficiency and High Power Density Adapter (고효율, 고전력밀도 아답터를 위한 도통밴드 제어 AC-DC 벅 컨버터)

  • Moon, SangCheol;Chung, Bonggeun;Koo, Gwanbon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.38-39
    • /
    • 2017
  • This paper proposes a new control method for an AC-DC Buck converter which is utilized as a front-end converter of a 2-stage high power density adapter. In the conventional adapter applications, 2-stage configuration shows higher power transfer efficiency and higher power density than those of the single stage flyback converter. In the 2-stage AC-DC converter, the boost converter is widely used as a front-end converter. However, an efficiency variation between high AC line and low AC line is large. On the other hand, the proposed conduction band control method for a buck front-end converter has an advantage of small efficiency variation. In the proposed control method, switching operation is determined by a band control voltage which represents output load condition, and an AC line voltage. If the output load increasesin low AC line, the switching operation range is expanded in half of line cycle. On the contrary, in light load and high line condition, the switching operation is narrowed. Thus, the proposed control method reduces switching loss under high AC line and light load condition. A 60W prototype which is configured the buck and LLC converter with the proposed control method is experimented on to verify the validity of the proposed system. The prototype shows 92.16% of AC-DC overall efficiency and 20.19 W/in 3 of power density.

  • PDF

Electrical Characteristics of High Voltage IGCT Devices for Rapid Electronic Railway (고속전철용 고전압 IGCT소자의 전기적 특성)

  • Kim, Sang-Cheol;Seo, Kil-Soo;Kim, Hyong-Woo;Kim, Eun-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1556-1558
    • /
    • 2003
  • IGCT devices is a superior devices for power conversion purpose. The basic structure of the IGCT devices is same as that of GTO thyristor. This makes the blocking voltage higher and controllable on-state current higher. In this paper, we present static and dynamic characteristics of 4.5 kV PT-type IGCT devices as a function of minority carrier lifetime, n-base thickness and n-buffer thickness. We should choose proper structural parameters for good electrical characteristics of GCT devices.

  • PDF