• Title/Summary/Keyword: High vacuum

Search Result 3,514, Processing Time 0.028 seconds

Study on 1,200 N-class bipropellant rocket engine using decomposed $H_2O_2$ and kerosene (분해된 과산화수소와 케로신을 이용한 1,200 N 급 이원추진제 로켓 엔진의 연구)

  • Jo, Sung-Kwon;An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Sung;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.156-164
    • /
    • 2010
  • As part of preliminary study for development of 1,200 N-class bipropellant rocket engine with the concentrated hydrogen peroxide, bipropellant engine elements were designed and experimentally tested. The catalysts of $MnO_2$ and $MnO_2$ added Pb as an addictive were compared to achieve high decomposition performance and the catalytic reactor with $MnO_2$ added Pb was designed and its decomposition efficiency of 97.2% was achieved. The autoignition tests of kerosene by decomposed hydrogen peroxide were carried out under various equivalence ratios to ignite without additional ignition sources. Autoignition were achieved in all experimental conditions and $C^*$ efficiencies at each condition were at or above 90%. From the measured thrust results, the highest value was 830 N which is in corresponds with 1,035 N at vacuum level using 94.1% theoretical $I_{sp}$.

  • PDF

The use of HRSEM to characterize new and aged membranes in drinking water production

  • Wyart, Y.;Nitsche, S.;Chaudanson, D.;Glucina, K.;Moulin, P.
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.251-266
    • /
    • 2011
  • This work deals with the use of High Resolution Scanning Electron Microscopy (HRSEM) to verify ultrafiltration membrane selectivity at the end of the production line as well as membrane ageing. The first part of this work is focused on new membranes. It is shown that it is better to use sputtering metallization than vacuum deposition, as this latter technique entails thermal damage to the skin layer. Moreover, the impact of the metallization layer on the determination of the membrane pore size is studied and it is observed that no impact of the metallization step can be clearly defined for a metallization layer ranging from 3 to 12 nm. For example, an average pore size of 16.9 nm and a recovery rate of 6.5 % are observed for a 150 kDa cellulose acetate membrane. These results are in agreement with those given by the manufacturer: pore size ranging from 10 to 15 nm and recovery rate ranging from 5 to 10 %. The second part of this work focuses on the study of membrane ageing. A PVDF hollow fibre membrane is studied. It is shown that a 65 % decrease in the permeate flux can be linked to a decrease in the number of pores at the surface of the membrane and a decrease in the recovery rate. In conclusion, a mapping of the pores is performed for several new hollow fibre membranes used to produce drinking water, made of different materials, with different geometries and molecular weight cut-off. These results provide reference data that will help better understand the phenomena of membrane fouling and membrane ageing.

Preparation and Characterization of Zn2SiO4:Mn2+ Green Phosphor with Solid State Reaction (고상법에 의한 Zn2SiO4:Mn2+녹색 형광체의 제조와 특성에 관한 연구)

  • Yoo, Hyeon-Hee;Nersisyan, Hayk;Won, Hyung-Il;Won, Chang-Whan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.352-356
    • /
    • 2011
  • [ $Zn_{2(1-x)}Mn_xSiO_4$ ]$0.07{\leq}x{\leq}0.15$) green phosphor was prepared by solid state reaction. The first heating was at $900^{\circ}C-1250^{\circ}C$ in air for 3 hours and the second heating was at $900^{\circ}C$ in $N_2/H_2$(95%/5%) for 2 hours. The size effect of $SiO_2$ in forming $Zn_2SiO_4$ was investigated. The temperature for obtaining single phase $Zn_2SiO_4$ was lowered from $1100^{\circ}C$ to $1000^{\circ}C$ by decreasing the $SiO_2$ particle size from micro size to submicro size. The effect of the activators for the Photoluminescence (PL) intensity of $Zn_2SiO_4:Mn^{2+}$ was also investigated. The PL intensity properties of the phosphors were investigated under vacuum ultraviolet excitation (147 nm). The emission spectrum peak was between 520 nm and 530 nm, which was involved in green emission area. $MnCl_2{\cdot}4H_2O$, the activator source, was more effective in providing high emission intensity than $MnCO_3$. The optimum conditions for the best optical properties of $Zn_2SiO_4:Mn^{2+}$ were at x = 0.11 and $1100^{\circ}C$. In these conditions, the phosphor particle shape was well dispersed spherical and its size was 200 nm.

Hydrophobic and Mechanical Characteristics of Hydrogenated Amorphous Carbon Films Synthesized by Linear Ar/CH4 Microwave Plasma

  • Han, Moon-Ki;Kim, Taehwan;Cha, Ju-Hong;Kim, Dong-Hyun;Lee, Hae June;Lee, Ho-Jun
    • Applied Science and Convergence Technology
    • /
    • v.26 no.2
    • /
    • pp.34-41
    • /
    • 2017
  • A 2.45 GHz microwave plasma with linear antenna has been prepared for hydrophobic and wear-resistible surface coating of carbon steel. Wear-resistible properties are required for the surface protection of cutting tools and achieved by depositing a hydrogenated amorphous carbon film on steel surface through linear microwave plasma source that has $TE_{10}-TEM$ waveguide. Compared to the existing RF plasma source driven by 13.56 MHz, linear microwave plasma source can easily generate high density plasma and provide faster deposition rate and wider process windows. In this study, $Ar/CH_4$ gas mixtures are used for hydrogenated amorphous carbon film deposition. When microwave power of 1000 W is applied, 40 cm long uniform $Ar/CH_4$ plasma could be obtained in gas pressure of 200~400 mTorr. The Vickers hardness measurement of hydrogenated amorphous carbon film on steel surface was evaluated. It was found the optimized deposition condition at $Ar:CH_4=25:25$ sccm, 300 mTorr with microwave power of 1000W and RF bias power of 100W. By deposition of hydrogenated amorphous carbon film, contact angle on steel surfaces increases from $43.9^{\circ}$ to $93.2^{\circ}$.

An Organic Electrophosphorescent Device Driven by All-Organic Thin-Film Transistor using Polymeric Gate Insulator

  • Pyo, S.W.;Shim, J.H.;Kim, Y.K.
    • Journal of Information Display
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, we demonstrate that the organic electrophosphorescent device is driven by the organic thin film transistor with spin-coated photoacryl gate insulator. It was found that electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure showed the non-saturated slope in the saturation region and the sub-threshold nonlinearity in the triode region, where we obtained the maximum power luminance that was about 90 $cd/m^2$. Field effect mobility, threshold voltage, and on-off current ratio in 0.45 ${\mu}m$ thick gate dielectric layer were 0.17 $cm^2/Vs$, -7 V, and $10^6$ , respectively. In order to form polyimide as a gate insulator, vapor deposition polymerization process was also introduced instead of spin-coating process, where polyimide film was co-deposited by high-vacuum thermal evaporation from 4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-oxydianiline (ODA) and cured at 150${\sqsubset}$for 1hr. It was also found that field effect mobility, threshold voltage, on-off current ratio, and sub-threshold slope with 0.45 ${\mu}m$ thick gate dielectric films were 0.134 $cm^2/Vs$, -7 V, and $10^6$ A/A, and 1 V/decade, respectively.

Characteristics of Copper Film Fabricated by Pulsed Electrodeposition with Additives for ULSI Interconnection (펄스전착법과 첨가제를 사용하여 전착된 ULSI배선용 구리박막의 특성)

  • Lee Kyoung-Woo;Yang Sung-Hoon;Lee Seoghyeong;Shin Chang-Hee;Park Jong-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.237-241
    • /
    • 1999
  • The characteristics of copper thin films and via hole filling capability were investigated by pulsed electrodeposition method. Especially, the effects of additives on the properties of copper thin films were studied. Copper films, which were deposited by pulsed electrodeposition using commercial additives, had low tensile stress value under 83.4 MPa and high preferred Cu (111) texture. Via holes with $0.25{\mu}m$ in diameter and 6 : 1 aspect ratio were successfully filled without any defects by superfilling. It was observed that copper microstructure deformed by twining. After heat treatment at $500^{\circ}C$ for 1 k in vacuum furnace, grain size was 1 or 2 times as large as film thickness and the bamboo structure was formed. Heat treated copper films showed good resistivities of $1.8\~2.0{\mu}{\Omega}{\cdot}cm$.

Fabrication and Mechanical Properties of $MoSi_2$ Based Composites ($MoSi_2$ 복합재료의 제조 및 기계적 특성)

  • Park, Yi-Hyun;Lee, Sang-Pill;Lee, Sung-Eun;Jin, Joon-Ok;Kim, Sa-Woong;Lee, Jin-Kyung;Yoon, Han-Ki
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.289-293
    • /
    • 2003
  • This study dealt with the characterization of $MoSi_2$ based composites containing three types of additive materials such as SiC, $NbSi_2\;and\;ZrO_2$ particles have been investigated, based on the detailed examination of their microstructures and fracture surfaces. The effects of reinforcing materials on the high temperature strength of $MoSi_2$ based composites have been also examined. $MoSi_2$ based composites were fabricated by the hot press process under the vacuum atmosphere. The volume fraction of reinforcing materials in the composite system was fixed as 20 %. The microstructures and the mechanical properties of $MoSi_2$ based composites were investigated by means of SEM, EDS, XRD and three point bending test.

  • PDF

Effect of Moisture in a Vacuum Chamber on the Deposition of c-BN Thin Film using an Unbalanced Magnetron Sputtering Method (비대칭 마그네트론 스퍼터링 방법에 의한 질화붕소막의 증착시 반응실내의 초기 수분이 입방정질화붕소 박막의 형성에 미치는 영향)

  • Lee, Eun-Sook;Park, Jong-Keuk;Lee, Wook-Seong;Seong, Tae-Yeon;Baik, Young-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.620-624
    • /
    • 2012
  • The role of moisture remaining inside the deposition chamber during the formation of the cubic boron nitride (c-BN) phase in BN film was investigated. BN films were deposited by an unbalanced magnetron sputtering (UBM) method. Single-crystal (001) Si wafers were used as substrates. A hexagonal boron nitride (h-BN) target was used as a sputter target which was connected to a 13.56 MHz radiofrequency electric power source at 400 W. The substrate was biased at -60 V using a 200 kHz high-frequency power supply. The deposition pressure was 0.27 Pa with a flow of Ar 18 sccm - $N_2$ 2 sccm mixed gas. The inside of the deposition chamber was maintained at a moisture level of 65% during the initial stage. The effects of the evacuation time, duration time of heating the substrate holder at $250^{\circ}C$ as well as the plasma treatment on the inside chamber wall on the formation of c-BN were studied. The effects of heating as well as the plasma treatment very effectively eliminated the moisture adsorbed on the chamber wall. A pre-deposition condition for the stable and repeatable deposition of c-BN is suggested.

Physical Properties of Freeze-Dried Powder of Aloe Vera Gel with Respect to the Concentrating Degree as Pre-Treatment (전처리 농축 정도에 따른 Aloe Vera gel의 동결건조분말의 물성)

  • Lee, Nam-Jae;Lee, Seung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.32-36
    • /
    • 2009
  • The physical properties of freeze-dried Aloe vera gel powders were examined according to the influence of the concentration degrees of the gel solutions as raw materials during freeze-drying. As a pre-treatment prior to freeze-drying, the gel solutions were vacuum-concentrated at three concentration levels (g water/g solids): high (H), 76; medium (M), 119; and low (L), 159. The water contents of the three powder samples were almost the same. For their viscosity measurements, non-Newtonian fluid behavior with shear thinning was observed in samples H and M, whereas Newtonian liquid behavior was found in sample L. In electrical conductivity measurements, sample H showed the highest conductivity upon dissolving the powder in water. For their water sorption isotherms, sample H was analyzed to have the least amount of bound water. Finally, it was determined that the degree of concentration caused only slight differences in the physical properties of freeze-dried Aloe gel powders.

POLYMER SURFACE MODIFICATION WITH PLASMA SOURCE ION IMPLANTATION TECHNIQUE

  • Han, Seung-Hee;Lee, Yeon-Hee;Lee, Jung-Hye;Yoon, Jung-Hyeon;Kim, Hai-Dong;Kim, Gon-ho;Kim, GunWoo
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.345-349
    • /
    • 1996
  • The wetting property of polymer surfaces is very important for practical applications. Plasma source ion implantation technique was used to improve the wetting properties of polymer surfaces. Poly(ethylene terephtalate) and other polymer sheets were mounted on the target stage and an RF plasma was generated by means of an antenna located inside the vacuum chamber. High voltage pulses of up to -10kV, 10 $\mu$sec, and up to 1 kHz were applied to the stage. The samples were implanted for 5 minutes with using Ar, $N_2,O_2,CH_4,CF_4$ and their mixture as source gases. A contact angle meter was used to measure the water contact angles of the implanted samples and of the samples stored in ambient conditions after implantation. The modified surfaces were analysed with Time-Of-Flight Mass Spectrometer (TOF-SIMS) and Auger Electron Spectroscopy (AES). The oxygen-implanted samples showed extremely low water contact angles of $3^{\circ}C$ compared to $79^{\circ}C$ of unimplanted ones. Furthermore, the modified surfaces were relatively stable with respect to aging in ambient conditions, which is one of the major concerns of the other surface treatment techniques. From TOF-SIMS analysis it was found that oxygen-containing functional groups had been formed on the implanted surfaces. On the other hand, the $CF_4$-implanted samples turned out to be more hydro-phobic than unimplanted ones, giving water contact angles exceeding $100^{\circ}C$ . The experiment showed that plasma source ion implantation is a very promising technique for polymer surface modification especially for large area treatment.

  • PDF