• Title/Summary/Keyword: High turbidity

Search Result 495, Processing Time 0.03 seconds

Quality Characteristics of Black Raspberry Wine Fermented with Different Yeasts (효모의 종류를 달리하여 제조한 Black Raspberry 발효주의 품질 특성)

  • Lee, Yoonji;Kim, Jae Cheol;Hwang, Keum Taek;Kim, Dong-Ho;Jung, Chang Min
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.5
    • /
    • pp.784-791
    • /
    • 2013
  • Four different yeasts (Fermivin (FM), Saf-instant yeast red (SI), Angest wine active dry yeast (AW) and Angest instant yeast high sugar (AI)) were used for the fermentation of black raspberry wine. The amount of reducing sugars in FM (2.7%) and AI (2.8%) were higher than those in SI (2.4%) and AW (2.5%). The amount of glucose (the major free sugar) was higher in AW (2.57 mg/mL) and AI (2.50 mg/mL) than FM (2.03 mg/mL) and SI (1.75 mg/mL). AW (11.95%) had the highest alcohol content, while SI (11.75%) had the lowest. The pH of FM (pH 3.73) was the lowest, and there were no significant differences in total acidity among the samples. The major organic acid in the wines was citric acid (6.71~8.18 mg/mL) and the amount of organic acids depended on the type of yeasts. The amount of malic acid was highest in SI (2.92 mg/mL), and lowest in AI (1.83 mg/mL). The Hunter color test showed that SI was highest in lightness, redness and yellowness, whereas AI was lowest. There were no differences in turbidity between the samples. There were no significant differences in total phenolic contents (TPC) and total anthocyanin contents (TAC). However, the TPC and TAC of black raspberry wines were higher than those in commercial red wines. The antioxidant activities of wines (determined by ABTS and FRAP) increased in the order of FM, AI, AW and SI. It could not be concluded which yeast is adequate for the fermentation of black raspberry wine because any of the tested yeasts showed the best in all the quality characteristics of the wines.

Feasibility Study of Wetland-pond Systems for Water Quality Improvement and Agricultural Reuse (습지-연못 연계시스템에 의한 수질개선과 농업적 재이용 타당성 분석)

  • Jang, Jae-Ho;Jung, Kwang-Wook;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.344-354
    • /
    • 2004
  • A pilot study was performed from September 2000 to April 2004 to examine the feasibility of the wetland-pond system for the agricultural reuse of reclaimed water. The wetland system was a subsurface flow type, with a hydraulic residence time of 3.5 days, and the subsequent pond was 8 $m^3$ in volume (2 m ${\times}$ 2 m ${\times}$ 2 m) and operated with intermittent-discharge and continuous flow types. The wetland system was effective in treating the sewage; median removal efficiencies of $BOD_5$ and TSS were above 70.0%, with mean effluent concentrations of 27.1 and 16.8 mg $L^{-1}$, respectively, for these constituents. However, they did often exceed the effluent water quality standards of 20 mg $L^{-1}$. Removal of T-N and T-P was relatively less effective and mean effluent concentrations were approximately 103.2 and 7.2 mg $L^{-1}$, respectively. The wetland system demonstrated high removal rate (92 ${\sim}$ 90%) of microorganisms, but effluent concentrations were in the range of 300 ${\sim}$ 16,000 MPN 100 $mL^{-1}$ which is still high for agricultural reuse. The subsequent pond system provided further treatment of the wetland effluent, and especially additional microorganisms removal in addition to wetland-pond system could reduce the mean concentration to 1,000 MPN 100 $mL^{-1}$ from about $10^5$ MPN 100 $mL^{-1}$ of wetland influent. Other parameters in the pond system showed seasonal variation, and the upper layer of the pond water column became remarkably clear immediately after ice melt. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the subsequent pond was effective for further polishing. This study concerned agricultural reuse of reclaimed water using natural systems. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, wetland- pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water in rural area.

Investigation on the water quality challenges and benefits of buffer zone application to Yongdam reservoir, Republic of Korea (용담호의 홍수터 적용을 위한 문제점 및 이점 조사 연구)

  • Franz Kevin Geronimo;Hyeseon Choi;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.274-283
    • /
    • 2023
  • Buffer zones, an example of nature-based solutions, offer wide range of environmental, social and economic benefits due to their multifunctionality when applied to watershed areas promoting blue-green connectivity. This study evaluated the effects of buffer zone application to the water quality of Yongdam reservoir tributaries. Particularly, the challenges and improvement of the buffer zone design were identified and suggested, respectively. Water and soil samples were collected from a total of six sites in Yongdam reservoir from September 2021 to April 2022. Water quality analyses revealed that among the sites monitored, downstream of Sangjeonmyeon Galhyeonri (SG_W_D2) was found to have the highest concentration for water quality parameters turbidity, total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN). This finding was attributed to the algal bloom observed during the sampling conducted in September and October 2021. It was found through the soil analyses that high TN and TP concentrations were also observed in all the agricultural land uses implying that nutrient accumulation in agricultural areas are high. Highest TN concentration was found in the agricultural area of Jeongcheonmyeon Wolpyeongri (JW_S_A) followed by Jucheonmyeon Sinyangri (JS_S_A) while the lowest TN concentration was found in the original soil of Sangjeonmyeon Galhyeonri (SG_S_O). Among the types of buffer zones identified in this study, Type II-A, Type II-B and Type III were found to have blue-green connectivity. However, initially, blue-green connectivity in these buffer zone types were not considered leading to poor design and poor performance. As such, improvement in the design considering blue-green network and renovation must be considered to optimize the performance of these buffer zones. The findings in this study is useful for designing buffer zones in the future.

Hydrogeochemistry and Statistical Analysis of Water Quality for Small Potable Water Supply System in Nonsan Area (논산지역 마을상수도 수질의 수리지화학 및 통계 분석)

  • Ko, Kyung-Seok;Ahn, Joo-Sung;Suk, Hee-Jun;Lee, Jin-Soo;Kim, Hyeong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.72-84
    • /
    • 2008
  • This study was carried out to provide proper management plans for small portable water supply system in the Nonsan area through water quality monitoring, hydrogeochemical investigation and multivariate statistical analyses. Nonsan area is a typical rural area heavily depending on small water supply system for portable usage. Geology of the area is composed of granite dominantly along with metasedimentary rocks, gneiss and volcanic rocks. The monitoring results of small portable water supply system showed that 13-21% of groundwaters have exceeded the groundwater standard for drinking water, which is 5 to 8 times higher than the results from the whole country survey (2.5% in average). The major components exceeding the standard limits are nitrate-nitrogen, turbidity, total coliform, bacteria, fluoride and arsenic. High nitrate contamination observed at southern and northern parts of the study area seems to be caused by cultivation practices such as greenhouses. Although Ca and $HCO_3$ are dominant species in groundwater, concentrations of Na, Cl and $NO_3$ have increased at the granitic area indicating anthropogenic contamination. The groundwaters are divided into 2 groups, granite and metasedimentary rock/gneiss areas, with the second principal component presenting anthropogenic pollution by cultivation and residence from the principal components analysis. The discriminant analysis, with an error of 5.56% between initial classification and prediction on geology, can explain more clearly the geochemical characteristics of groundwaters by geology than the principal components analysis. Based on the obtained results, it is considered that the multivariate statistical analysis can be used as an effective method to analyze the integrated hydrogeochemical characteristics and to clearly discriminate variations of the groundwater quality. The research results of small potable water supply system in the study area showed that the groundwater chemistry is determined by the mixed influence of land use, soil properties, and topography which are controlled by geology. To properly control and manage small water supply systems for central and local governments, it is recommended to construct a total database system for groundwater environment including geology, land use, and topography.

Spatial Structure and Seasonal Variation of Temperature and Salinity in the Early Stage of Reclaimed Brackish Lake (Hwaong Reservoir) (간척호 (화옹호) 생성 초기의 수온과 염분의 공간적 구조와 계절적 변화)

  • Shin, Jae-Ki;Yoon, Chun-Gyeong;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.352-365
    • /
    • 2006
  • In order to evaluate the change of aquatic environment in the reclaimed Hwaong Reservoir, situated in the early stage after construction, this study was conducted to measure the change of precipitation, temperature, and salinity from June 2002 to January 2006. The range and mean of temperature was $-0.7{\sim}33.4^{\circ}C$ and $13.6^{\circ}C$, respectively. Temperature of upstream part rapidly changed during the transitional period; from spring to summer and from fall to winter. It showed abrupt decrease with high discharge from the streams temporarily. While, hypolimnetic temperature of upstream happened to be somewhat higher than that of surface or downstream. The range and mean of salinity was 0.3${\sim}$32.3 psu and 25.3 psu, respectively. Vertical difference of salinity was marked, and the change in the surface water was much higher than middle or bottom layers. It showed the marked difference at all stations, except for the bottom layer of upstream into which Namyang Stream flows, indicating that vertical gradient of salinity is strongly sustained in the reservoir. Salinity was changed markedly during the storm period (June${\sim}$October), and freshwater with low salinity was expanded from upstream to downstream along the surface layer. The surface of the reservoir was totally covered by the stream discharged water with a large amount of silt and low salinity during this period. The difference of temperature and salinity between the surface and bottom layer ranged $-10.6{\sim}9.7^{\circ}C$ and $-27.1{\sim}30.0$ psu, respectively. The big difference of salinity appeared with a large discharge of freshwater from the streams or large input of seawater through the gate. Salinity was negatively correlated with temperature, indicating the influence of monsoon storm events on the salinity under the whole watershed scale of this brackish reclaimed reservoir.

The Limnological Survey and Phosphorus Loading of Lake Hoengsung (횡성호의 육수학적 조사와 인부하)

  • Kwon, Sang-Yong;Kim, Bom-Chul;Heo, Woo-Myung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.411-422
    • /
    • 2004
  • A limnological survey was conducted in a reservoir, Lake Hoengsung located in Kangwondo, Korea, from July 2000 to September 2001 on the monthly basis. Phosphorus loading from the watershed was estimated by measuring total phosphorus concentration in the main tributary. Secchi disc transparency, epilimnetic (0-5 m) turbidity, chlorophyll a (Chl-a), total phosphorus (TP), total nitrogen(TN) and silica concentration were in the range of 0.9-3.5 m, 0.1-8.5 NTU, 0.3-32.4 mgChl $m^{-3}$, 5-46 mgP $m^{-3}$, 0.83-3.55 mgN $L^{-1}$ and 0.5-9.6 mgSi $L^{-1}$, respectively. Green algae and cyanobacteria dominated phytoplankton community in warm seasons, from July through October, 2000. In July a green alga (Scenedesmus sp.) was dominant with a maximum cell density of 10,480 cells mL. Cyanobacteria (Microcystics sp.) dominated in August and September with cell density of 3,492 and 295 cells mL ,respectively. Species diversity of phytoplankton was highest (2.22) in July. The trophic state of the reservoir can be classified as eutrophic on the basis of TP, Chl-a, and Secchi disc transparency. Because TP concentration was high in flood period, most of phosphorus loading was concentrated in rainy season. TP loading was calculated by multiplying TP and flow rate. The dam managing company measured inflow rate of the reservoir daily, while TP was measured by weekly surveys. TP of unmeasured days was estimated from the empirical relationship of TP and the flow rate of the main tributary; $TP=5.59Q^{0.45}\;(R^2=0.47)$. Annual TP loading was calculated to be 4.45 tP $yr^{-1}$, and the areal P loading was 0.77 gP $m^{-2}\;yr^{-1}$ which is similar to the critical P loading for eutrophication by Vollenweider's phosphorus model, 0.72 gP $m^{-2}\;yr^{-1}$.

Guidelines and Optimum Treatment for Agriculture Reuse of Reclaimed Water (농업적 용수재이용 수질기준을 고려한 적정 하수재처리에 관한 연구)

  • Jung, Kwang-Wook;Jeon, Ji-Hong;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.356-368
    • /
    • 2003
  • Water quality of effluent from wastewater treatment plants (WWTPS) was reviewed to examine the feasibility of agricultural reuse using USEPA and WHO guidelines. It might meet the guidelines for BOD and SS, however, the most critical microbiological concentration was too high and further treatment is required. The pilot study of three treatments were performed to reduce microbiological concentrations. The UV irradiation was proved to be very effective in disinfection of secondary level effluent, and about 30 mW ${\cdot}$ s/$cm^2$ of dose was suggested to meet the even most stringent USEPA guidelines. Slow sand filter demonstrated effective removal of bacteria, and effluent concentration of total coliform (TC), fecal coliform (FC), and E. coli. dropped from about 10,000/100 mL to 300, 200, and 150 MPN/100 mL, respectively, showing over 95% removal. These level of bacterial concentration sufficiently meet the WHO guidelines ($10^3\;{\sim}\;10^5$ FC/100 mL), and could meet the more stringent USEPA guidelines (200 FC/100 mL) if properly applied. Slow sand filter also provided about 50% removal of SS, turbidity, and BOD in addition to bacterial removal. The removal efficiency of pond system was relatively poor, but still showed over 85% removal and effluent concentration of TC, FC, and E. coli was all below 10,000/100 mL. The pond system alone could meet the WHO guidelines, but hardly meet the USEPA guidelines and further treatment might be necessary. Overall, three methods evaluated in the study treat the effluent to meet the WHO microbiological guidelines for agricultural reuse. The UV disinfection and slow sand filter might also could the USEPA guidelines, while the pond system can hardly meet the USEPA guidelines if applied alone. The WHO and USEPA guidelines were made based on data from upland field agricultural system and may not be directly applicable to the paddy field agricultural system. Therefore, national standards for agricultural reuse of reclaimed water should be made considering domestic agricultural systems as well as international guidelines. Also, further investigation is recommended to develop optimum and feasible treatment measures for agricultural reuse of effluent from WWTPs.

Studies on Storage Characteristics of Tofu with Herb (허브첨가 두부의 저장 특성)

  • Jeon, Mi-Kyung;Kim, Mee-Ra
    • Korean journal of food and cookery science
    • /
    • v.22 no.3 s.93
    • /
    • pp.307-313
    • /
    • 2006
  • Tofu was prepared with various herbs (green tea, rosemary, lavender and thyme) and the tofu quality was investigated during storage. In the measurement of tofu color, the L and b values increased during storage period. Especially, the b value was very high at 8 days after storage. The pH value of tofu increased until 6 days of storage, but then decreased. The turbidity gradually increased until 6 days of storage and rapidly increased at 8 days of storage. The microorganism count of herb tofu was lower an that of control tofu during storage. Especially green tea tofu showed the lowest psychrotrophic microorganism count as $1.3{\times}10^8\;CFU/g$. In addition, lavender tofu showed the lowest aerobic mesophilic microorganism count $(2.0{\times}10^7\;CFU/g)$ at 8 days of storage. In texture analysis, hardness and chewiness of herb tofu increased with increasing storage period. Springiness increased to 2 or 4 days of storage but decreased after 6 or 8 days. Therefore, herb tofu is expected to have good quality physiologically as well as microbiologically.

An Assessment of Primary Productivity Determined by Stable Isotopes and Diving-PAM in the Pyropia Sea Farms of the Manho (Jindo-Haenam) Region on the Southwestern Coast of the Korean Peninsula (안정동위원소 및 Diving-PAM을 이용한 남서해안 만호해역 (진도-해남) 김 양식장에서의 일차 생산력)

  • Kim, Jeong Bae;Lee, Won-Chan;Kim, Hyung Chul;Hong, Sokjin
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.1
    • /
    • pp.18-29
    • /
    • 2016
  • The effects of water temperature, salinity, water column nutrient contents, and phytoplankton primary productivity on pigment composition and concentration, as well as primary productivity of Pyropia yezoensis Ueda purple lavers were studied at the primary cultivation areas in the Manho (Jindo-Haenam) region on the southwestern coast of Korea in March 2014. The water temperature was $9.1{\sim}9.6^{\circ}C$, salinity was 32.5~33.1, and transparency was 0.7~1.5 m. The shallow euphotic depth resulted from the high turbidity. Water column dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and silicate concentrations were $3.59{\sim}5.73{\mu}M$, $0.16{\sim}0.41{\mu}M$, and $12.41{\sim}13.94{\mu}M$, respectively. Chlorophyll a (Chl a) concentration was $0.51{\sim}1.25{\mu}g\;L^{-1}$. Nanoplankton ($0.7{\sim}20{\mu}m$ size class) accounted for 58% of the total Chl a concentration. Fucoxanthin was the dominant photosynthetic pigment at all sites. Microplankton ($20{\sim}200{\mu}m$ size class) accounted for 64% of the total fucoxanthin concentration. The primary productivity of phytoplankton was $57.72{\pm}4.67(51.05{\sim}66.71)mg\;C\;m^{-2}d^{-1}$. The nanoplankton ($0.7{\sim}20{\mu}m$ size class) accounted for 77% of the total phytoplankton primary productivity. The calculated phytoplankton primary productivity was $11,337kg\;C\;d^{-1}$. The primary productivity of Pyropia blades was $1,926{\pm}192(1,102{\sim}2,597)mg\;C\:m^{-2}d^{-1}$, i.e., calculated as $39,295kg\;C\;d^{-1}$. The total primary productivity of phytoplankton and Pyropia blades was $50,632kg\;C\;d^{-1}$. The primary productivity of Pyropia blades was 3.5 times greater than that of phytoplankton in the Manho region on the southwestern coast of Korea.

Chemical Mass Balance of Materials in the Keum River Estuary: 1. Seasonal Distribution of Nutrients (금강하구의 물질수지: 1. 영양염의 계절적 분포)

  • Yang, Jae-Sam;Jeong, Ju-Young;Heo, Jin-Young;Lee, Sang-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.71-79
    • /
    • 1999
  • As part of an on-going project investigating flux of materials in the Keum River Estuary, we have monitored seasonal variations of nutrients, suspended particulate matter (SPM), chlorophyll, and salinity since 1997. Meteorological data and freshwater discharge from the Keum River Dike were also used, Our goal was to answers for (1) what is the main factor for the seasonal fluctuation of nutrients in the Keum River Estuary? and (2) are there any differences in nutrient distributions before and after the Keum River Dike construction? Nitrate concentrations in the Keum River water were kept constant through the year. Whereas other nutrients varied with evident seasonality: high phosphate and ammonium concentrations during the dry season and enhanced silicate contents during the rainy season. SPM was found similar trend with silicate. During the rainy season, the freshwater discharged from the Keum River Dike seemed to dilute the phosphate and ammonium, but to elevate SPM concentration in the Keum Estuary. In addition, the corresponding variations of SPM contents in the estuarine water affected the seasonal fluctuations of nutrients in the Estuary. The most important source of the nutrients in the estuarine water is the fluvial water. Therefore, the distribution patterns of nutrients in the Estuary are conservative against salinity. Nitrate, nitrite and silicate are conservative through the year. The distribution of phosphate and ammonium on the other hand, display two distinct seasonal patterns: conservative behavior during the dry season and some additive processes during the rainy days. Mass destruction of freshwater phytoplankton in the riverine water is believed to be a major additive source of phosphate in the upper Estuary. Desorption processes of phosphate and ammonium from SPM and organic matter probably contribute extra source of addition. Benthic flux of phosphate and ammonium from the sediment into overlying estuarine water can not be excluded as another source. After the Keum River Dike construction, the concentrations of SPM decreased markedly and their role in controlling of nutrient concentrations in the Estuary has probably diminished. We found low salinity (5~15 psu) within 1 km away from the Dike during the dry season. Therefore we conclude that the only limited area of inner estuary function as a real estuary and the rest part rather be like a bay during the dry season. However, during the rainy season, the entire estuary as the mixing place of freshwater and seawater. Compared to the environmental conditions of the Estuary before the Dike construction, tidal current velocity and turbidity are decreased, but nutrient concentrations and chance of massive algal bloom such as red tide outbreak markedly increased.

  • PDF