Guidelines and Optimum Treatment for Agriculture Reuse of Reclaimed Water

농업적 용수재이용 수질기준을 고려한 적정 하수재처리에 관한 연구

  • 정광욱 (건국대학교 지역건설환경공학과) ;
  • 전지홍 (건국대학교 지역건설환경공학과) ;
  • 함종화 (건국대학교 지역건설환경공학과) ;
  • 윤춘경 (건국대학교 지역건설환경공학과)
  • Published : 2003.09.30

Abstract

Water quality of effluent from wastewater treatment plants (WWTPS) was reviewed to examine the feasibility of agricultural reuse using USEPA and WHO guidelines. It might meet the guidelines for BOD and SS, however, the most critical microbiological concentration was too high and further treatment is required. The pilot study of three treatments were performed to reduce microbiological concentrations. The UV irradiation was proved to be very effective in disinfection of secondary level effluent, and about 30 mW ${\cdot}$ s/$cm^2$ of dose was suggested to meet the even most stringent USEPA guidelines. Slow sand filter demonstrated effective removal of bacteria, and effluent concentration of total coliform (TC), fecal coliform (FC), and E. coli. dropped from about 10,000/100 mL to 300, 200, and 150 MPN/100 mL, respectively, showing over 95% removal. These level of bacterial concentration sufficiently meet the WHO guidelines ($10^3\;{\sim}\;10^5$ FC/100 mL), and could meet the more stringent USEPA guidelines (200 FC/100 mL) if properly applied. Slow sand filter also provided about 50% removal of SS, turbidity, and BOD in addition to bacterial removal. The removal efficiency of pond system was relatively poor, but still showed over 85% removal and effluent concentration of TC, FC, and E. coli was all below 10,000/100 mL. The pond system alone could meet the WHO guidelines, but hardly meet the USEPA guidelines and further treatment might be necessary. Overall, three methods evaluated in the study treat the effluent to meet the WHO microbiological guidelines for agricultural reuse. The UV disinfection and slow sand filter might also could the USEPA guidelines, while the pond system can hardly meet the USEPA guidelines if applied alone. The WHO and USEPA guidelines were made based on data from upland field agricultural system and may not be directly applicable to the paddy field agricultural system. Therefore, national standards for agricultural reuse of reclaimed water should be made considering domestic agricultural systems as well as international guidelines. Also, further investigation is recommended to develop optimum and feasible treatment measures for agricultural reuse of effluent from WWTPs.

본 연구에서는 국제적으로 사용하고 있는 농업용수 재이용 수질기준을 검토하고 우리나라 하수처리 방류수의 재이용 가능성에 대하여 고찰하였으며, 재이용수로이용하기 위해 필요한 처리대안에 실험 ${\cdot}$ 연구한 결과이다. Biofilter 유출수를 17, 25, 40W의 3가지 램프로 UV소독한 결과 40W 램프에서는 모든 경우에 100%소독되었으며, 25 W와 17 W에서는 전반적으로 97%이상 소독효율을 나타내었으며, 적절하게 설계된 UV소독을 거친 하수처리장 유출수는 USEPA와 WHO의 가장 엄격한 수질기준을 충분히 만족시켜서 보건 ${\cdot}$ 위생적인 문제를 일으키지 않을 것으로 판단된다. 간헐 분사방식의 완속모래여과 처리후 미생물의 처리효율은 TC, FC, E. coli 모두 평균 95% 이상 높은 처리 효율을 나타내었으며, 완속모래여과 후의 평균 농도는 각각 330, 207, 154 MPN/100 mL이었고 탁도와 SS는 모두 약 50%의 처리효율을 나타내었는데, 이는 WHO의 수질기준을 충분히 만족시켰으며, USEPA의 수질기준인 200FC/100mL의 경우에도 적절한 관리가 이루어 질 경우 만족시킬 수 있을 것으로 판단된다. 탁도는 평균 0.8NTU로써 먹는물 수질기준인 INTU수준이었고, SS의 경우에도 50% 이상의 처리효율을 나타내어 USEPA의 가장 엄격한 수질기준을 충분히 만족하였으며, 영양물질의 제거에도 기여를 하기 때문에 수계의 오염부하를 줄이는 측면에서도 유리할 것으로 생각된다. 연못시스템을 거치면서 TC, FC, E. coli 모두 85%정도 제거되어 평균미생물농도가 1,000MPN/100 m1 이하이었다. 우리나라의 수질기준으로 WHO 수질기준이 논농사에 적용될 경우 소독이나 여과처리 없이도 재이용할 수 있을 것이라 판단되나, USEPA의 수질기준이 적용될 경우에는 연못시스템만으로도 부족하여 추가적인 처리가 필요할 것으로 생각된다. 과거 US EPA의 위험을 완전히 배제한 수질기준을 여러 국가에서 받아들여 사용하고 있으나, WHO에서는 이수질기준이 경제 ${\cdot}$ 사회적으로 불합리한 기준이라 판단하고 보다 완화된 수질기준을 제시하였다. 우리나라에서도 수질기준을 결정할 때 논농사라는 특수한 실정에 맞는 수질 기준을 정해 경제적이고 실용적인 처리방법을 선정하는 것이 중요하다고 할 수 있다. 벼의 경우는 껍질과 추가적인 처리 후 섭취하는 작물이기 때문에 엄격한 수질기준이 필요하지 않을 수 있으나, 장기간 담수상태를 유지함으로써 농민을 포함한 공중보건에 위해성을 줄 가능성이 크므로 세균성미생물 등에 대한 신중한 결정이 필요하다.

Keywords

References

  1. Kwun, S.K. 1997. Issues and Perspectives on the Demandand Supply of Agricultural Water, Report of 47th RegularMonthly Seminar of the Forum for Agricultural andRural Policy : 50. (in Korean).
  2. Lee K.H. and S.C. Lee. 2002. UV Disinfection. Journal of Environmental Hi-Technology, 1-13. (in Korean).
  3. Lee S.H. 2002. UV Disinfection for Drinking Water Treatment.KSWQ∙KWWA Processing of 2002 fall conference.(in Korean).
  4. Ministry of Agriculture and Forestry (M.O.A.F.). 1997. Study of agricultural water quality guidelines establishment and improvement systems. 204. (in Korean).
  5. Ministry of Agriculture and Forestry (M.O.A.F.). 2001. Anannual statistics report improvement of foundationfacilities in agriculture (in Korean).
  6. Ministry of construction and transportation (M.O.C.T.).1992. A standard of equipment and guidelines for reclaimedwater (in Korean).
  7. Ministry of Environment (M.O.E.). 2001. The Water QualityReports of Wastewater Treatment Plant. 2001. (inKorean).
  8. Ministry of Environment (M.O.E.). 2002. The Water QualityReports of Wastewater Treatment Plant. 2002. (inKorean).
  9. Ministry of Environment (M.O.E.). 2002. Guidelines forSetting Disinfection System in Wastewater TreatmentPlant, 1-5. (in Korean).
  10. Seoul Univ. 2002. Application for wastewater reclamationand reuse. Sustainable water resources research center(in Korean).
  11. Yoon, C.G., H.S. Hwang and S.H. Woo. 2001. Rice growthand nutrient change in paddy soil with reclaimed sewage-irrigation. Journal of the Korean society of agriculturalengineers 43(6): 154-162. (in Korean).
  12. Yoon, C.G., S.K. Kwun and S.H. Woo. 2000. Effect of reclaimedsewage irrigation on paddy rice culture andsoil characteristics. Journal of the Korean society ofagricultural engineers 42(3): 66-75. (in Korean).
  13. Yoon, C.G., K.W. Jung, J.H. Ham and J.H. Jeon. 2003.Feasibility Study of UV-Disinfection for Water Reuseof Effluent from Wastewater Treatment Plant. Journalof the Korean Society of agricultural engineers. 45(2):126-137 (in Korean).
  14. APHA. 1995. Standard Methods for the Examination ofWater and Wastewater 19th Ed, APHA, Washington,DC.
  15. California state department of public health. 1978. Statewidestandards for the safe directuse of reclaimed wastewaterfor irrigation and recreational impoundments.Berkeley. California state department of public health.(California administrative code, Title 17-Public health).
  16. Davies-colley, R.J., A.M. Donnison, D.J. Speed, C.M. Rossand J.W. Nagels. 1998. Inactivation of faecal indicatormicroorganism in waste stabilization ponds: Interactionsof environmental factors with sunlight. WaterResearch. 33(5): 1220-1230.
  17. Downes, A. and T.P. Blunt. 1977. Researches on the effectof light upon bacteria and other organisms. Proc R Soc28(1): 488-500.
  18. Goldstein, S., V. Weak. M. Flowler and S. Poh. 1972. Astudy of selected economic and environmental aspectsof individual home wastewater treatment systems.National Technical information Service. US Departmentof Commerce. Springfield. VA. pp. 10-29.
  19. Gregory, A.S., J.P. Mally, A.B. Margolin and A.P. Hogan.2000. UV inactivation of Viruses in Natural Water.Denver. AWWA.
  20. Kashimada, K., N. Kamico, K. Yamamoto and S. Ohgaki.1996. Assessment of photoreactivation following ultravioletlight disinfection. Water Science Technology.33(10-11): 261-269.
  21. Loge, F., W. Emerick, C.R. Williams, W. Kodo, G. Tchobanoglousand J. Darby. 1997. Impact of Particle AssociatedColiform on UV disinfection. Proceedings of theWater Environment Federation 70th Annual Conferenceand Exposition (Chicago).
  22. NADB (North American Wetlands for Water Quality TreatmentDatabase). 1994. Electronic database created byR. Knight, R. Ruble, R. Kadlec, and S. Reed for the U.S.Environmental Protection Agency. Copies availablefrom Don Brown. US EPA. 569-7630.
  23. Nakhla, G. and S. Farooq. 2003. Simultaneous nitrification-denitrification in slow sand filters. Journal of HazardousMaterials. B96: 291-303.
  24. Oswald, W.J. 1988. Advances in Anaerobic pond systemdesigns. In Advances in Water Quality Improvement ed. E.F. Gloyna and W.W. Eckenfelder. University ofTexas Press. Austin. 186-194.
  25. Ronan, M.C., E.M. Michael, J. Tina, G.G. Kevin and B.Joseph. 1996. Solar disinfection of drinking water anddiarrhoea in Massai children: a controlled field trial.Early Reports. 348: 1695-1697.
  26. Sanitation Districts of Los Angeles County. 1989. 1988~89Annual ground water Recharge monitoring report.Sanitation Districts of Los Angeles County. Whittier.California.
  27. Sinder, D.E., J.L. Darby and G. Tchobanoglous. 1991. Evaluationof Ultraviolet Disinfection for Wastewater ReuseApplications in California. Department of CivilEngineering. University of California at Davis. California.
  28. Strauss, M. Notes on the reuse practice in selected countriesof the Gulf region, northern Africa and LatinAmerica. Unpublished paper presented at the Seminaron Effluent Reuse, Ministry of Health, Oman, April1987.
  29. Tchobanoglous, G., F. Loge, J. Darby and M. Devries. 1996.UV disign : Comparison of probabilistic and deterministicdesign approaches. Water Science and Technology.33(10-11): 251-260.
  30. US EPA. 1992. Manual-Guidelines for water reuse. USEPA/625/R-921004. U.S. Agency international development.11-20.
  31. WHO. 1989. Health Guidelines for the use of wastewaterin agriculture and aquaculture. Report of a WHO ScientificGroup. Technical Report Series. 778. WHO.Geneva.
  32. WHO. 1973. Water quality criteria. Ecological researchseries. EPA R-3-73-033. US Environmental Protectionagency Washington, DC.
  33. WHO. 2000. Guidelines for the microbiological quality oftreated wastewater used in agriculture: recommendationsfor revising WHO guidelines: Special Theme-Environment and Health.