The Limnological Survey and Phosphorus Loading of Lake Hoengsung

횡성호의 육수학적 조사와 인부하

  • Kwon, Sang-Yong (Dept. of Environmental Science, Kangwon National University) ;
  • Kim, Bom-Chul (Dept. of Environmental Science, Kangwon National University) ;
  • Heo, Woo-Myung (Dept. of Environmental Eng., Samcheok National University)
  • Published : 2004.12.31

Abstract

A limnological survey was conducted in a reservoir, Lake Hoengsung located in Kangwondo, Korea, from July 2000 to September 2001 on the monthly basis. Phosphorus loading from the watershed was estimated by measuring total phosphorus concentration in the main tributary. Secchi disc transparency, epilimnetic (0-5 m) turbidity, chlorophyll a (Chl-a), total phosphorus (TP), total nitrogen(TN) and silica concentration were in the range of 0.9-3.5 m, 0.1-8.5 NTU, 0.3-32.4 mgChl $m^{-3}$, 5-46 mgP $m^{-3}$, 0.83-3.55 mgN $L^{-1}$ and 0.5-9.6 mgSi $L^{-1}$, respectively. Green algae and cyanobacteria dominated phytoplankton community in warm seasons, from July through October, 2000. In July a green alga (Scenedesmus sp.) was dominant with a maximum cell density of 10,480 cells mL. Cyanobacteria (Microcystics sp.) dominated in August and September with cell density of 3,492 and 295 cells mL ,respectively. Species diversity of phytoplankton was highest (2.22) in July. The trophic state of the reservoir can be classified as eutrophic on the basis of TP, Chl-a, and Secchi disc transparency. Because TP concentration was high in flood period, most of phosphorus loading was concentrated in rainy season. TP loading was calculated by multiplying TP and flow rate. The dam managing company measured inflow rate of the reservoir daily, while TP was measured by weekly surveys. TP of unmeasured days was estimated from the empirical relationship of TP and the flow rate of the main tributary; $TP=5.59Q^{0.45}\;(R^2=0.47)$. Annual TP loading was calculated to be 4.45 tP $yr^{-1}$, and the areal P loading was 0.77 gP $m^{-2}\;yr^{-1}$ which is similar to the critical P loading for eutrophication by Vollenweider's phosphorus model, 0.72 gP $m^{-2}\;yr^{-1}$.

횡성호에서는 수중폭기 기간에도 수온약층이 형성되었으며, 수중폭기로 인한 영향이 크지 않은 것으로 판단된다. 모든 정점의 표충(0-5m)평균 탁도는 0.1-8.5NTU로 우기 이후에 중층 및 심층에서 높았다. 투명도는 0.9-3.5m의 범위로 댐 하류(St. 1)정점에서 크게 나타났으며, 상류로 갈수록 낮았다. 용존산소는 2000년 7월과 8월에 전 지점의 0m에서 $8.4-14.1\;mgO_2\;{\cdot}\;L^{-1}$로 높았으나 심층에서는 고갈 상태를 보였다. 또한 2001년 7월과 9월에도 정점 1의 심층에서 $1\;mgO_2\;{\cdot}\;L^{-1}$ 내외로 매우 낮았다. 전 정점의 표층 (0-5 m)평균 총인 농도는 5-46 mgP ${\cdot}$ $m^{-3}$로 초봄의 turnover 직후 및 우기이후에 높았으며 용존 무기인 농도는 0.2-13.2 mgP ${\cdot}$ $m^{-3}$로 2001년 9월을 제외하고는 대부분10mgp ${\cdot}$ $m^3$이하 이였다. 횡성호의 연간 인부하량은 약 4.45ton 정도로 유역내에서 발생되는 총인 발생량 71.34ton중 약 6.2%만이 호수내로 유입되는 것으로 나타났다. 수면적당 인부하량은0.77 gp ${\cdot}\;m^2\;{\cdot}\;yr^{-1}$으로 횡성호의 환경용량이라 할 수 있는 과잉임계부하량 0.72 gp ${\cdot}\;m^2\;.\;yr^{-1}$을 0.05 gP ${\cdot}\;m^2\;.\;yr^{-1}$ 초과한 수준이다. 전 정점 표층 (0-5 m)평균 총질소 농도는 0.83-3.55 mgN ${\cdot}\;L^{-1}$로 우기 이후에 중충 이하 지역에서 높았다. 질산성 질소는 전 정점의 표층(0-5m)평균이 0.09-3.33 mgN ${\cdot}\;L^{-1}$로 2001년 6월에 가장 낮았다. 암모니아성 질소는 전 정점의 표층(0-5m)평균이 0.04-0.23 mgN ${\cdot}\;L^{-1}$이였다. 전 정점 표층 (0-5 m)평균 규소농도는 0.5-9.6 mgSi ${\cdot}\;L^{-1}$로 봄철에 낮았으며, 우기이후에 다시 증가하였다. 평균 TSI는 2000년과 2001년에 각각 59와 57이었다. 전 정점 표층 (0-5 m)평균 엽록소 a농도는 0.3-32.4 mg ${\cdot}\;m^{-3}$로 여름철에 높은 경향을 보였으며, 정점별로는 상류지역에서 높았다. 식물플랑크톤은 2000년 7월에 녹조류인 Scenedesmus sp.가 10,480 cells ${\cdot}\;mL^{-1}$,8월과 9월에는 남조류인 Microcystis sp.가 각각 3,492와 296 cells ${\cdot}\;mL^{-1}$로 우점하였다. 10월에는 녹조류인 Coelastrum microporum이 133 cells ${\cdot}\;mL^{-1}$, 11월에는 규조류인 Asterionella formosa가 2,654 cells ${\cdot}\;mL^{-1}$, 12월에는 규조류인 .Aulacoseira granulata가 29 cells ${\cdot}\;mL^{-1}$우점종이였다. 특히 2000년 여름철에 우점종이였던 남조류가 2001년에는 출현하지 않았으며 종 다양성 (diversity)지수는 2000년 7월에 2.22로 가장 높았으며, 생물량도 조사기간중 36,640 cells ${\cdot}\;mL^{-1}$로 가장 많았다.

Keywords

References

  1. APHA (American Public Health Association). 1992. 'Standard Methods for the examination of water and wastewater 18th ed', Washington D.C
  2. Bloesch, J.P., P. Stadelman and H. Buhrer. 1977. Primary production and sedimentation in the euphotic zone of two Swiss lakes. Limnol. Oceanogr. 22: 511-526
  3. Carlson, R.E. 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361-369
  4. Fast, A.W., B. Moss and R.G. Wetzel. 1973. Effects of Artificial Aeration on the Chemistry and Algae of Two Michigan Lakes. Water Resources Res. 9: 624-647
  5. Fast, A.W. and R.G. Hulquist. 1989. Oxygen and temperature relationships in nine artificially aerated California reservoirs. Calif. Fish and Game 75: 213-217
  6. Forsberg, C. and S.O. Ryding. 1980. Eutrophication parameters and trophic state indices in 30 swedish waste receving lake, Arch Fur Hydrobiol. 89: 189-207
  7. Havens, K.E. 2000. Using Trophic State Index (TSI) Values to Draw Inferences Regrding Phytoplankton Limiting Factors and Seston Composition from Routine Water Quality Monitoring Data. Kor. J. Limol. 33: 187-196
  8. Heo, W.M., B. Kim, T.S. Ahn and K.J. Lee. 1992. Phosphorus loadings from watershed and fishfarms into Lake Soyang and the phosphorus budget. Kor. J. Limnol. 25(4): 207-214
  9. Heo, W.M. 1993. A Study of the Eutrophication and the Cyanobacterial Bloom in Lake Soyang. Ph.D thesis. Kangwon National University
  10. Heo, W.M., B. Kim, Y. Kim and K.S. Choi. 1998. Storm runoff of phosphorus from nonpoint sources into Lake Soyang and transportation of trubid water mass within the lake. Kor. J. Limnol. 31: 1-8
  11. Heo, W.M., J.O. Kim and B. Kim. 1999. A study of water quality variations on the artificial aeration in water supply system (Lake Dalbang). J. KSWQ SEP. 15: 335-343
  12. Heo, W.M., S.Y. Kwon, B. Kim and J.H. Park. 2000. Long-term Variation of Water Quality in Lake Andong. Kor. J. Limnol. 33: 260-266
  13. Heo, Woo-myung and Bomchul Kim. 2004. The effect of artificial destratification on phytoplankton in a reservoir. Hydrobiologia, 524: 229-239
  14. Kim, B., T.S. Ahn and K.S. Cho. 1988. A Comparative Study of the Eutrophication in Reservoirs of the Han River. Kor. J. Limnol. 21: 151-163
  15. Kim, B., J.H. Park, G. Hwang and K. Choi. 1997. Eutrophication of Large Freshwater Ecosystem in Korea. Kor. J. Limnol. 30: 512-517
  16. Kim, B., J.H. Park, B.J. Lim, W.M. Heo, G. Hwang, K. Choi and K.S. Chae. The limnological survey of major lakes in Korea (2): Lake Hapchon. Kor. J. Limnol. 31: 312-327
  17. Kim, B., J.H. Park, W.M. Heo, B.J. Lim, G. Hwang, K. Choi and K.S. Chae. 1999. The Limnological Survey of Major Lakes in Korea (3): Lake Jinyang. Kor. J. Limnol. 32: 111-126
  18. Korea Ministry of Construction. 1991. Impact assesment of Hoengsung Reservoir construction. 421pp. (In Korean)
  19. Kwon, S.Y. 2002. Limnoecological Study of Lake Hwajinpo. Graduate School thesis. Samcheok National University
  20. Lee, K.J., W.M. Heo and B. Kim. 1993. Phosphorus loadings from watershed and fishfarms into Lake Daechung and the phosphorus budget. J. KSWQ SEP. 9: 139-144
  21. Lee, I.J. Distribution of Phosphorus Concentration and Phosphorus Loading of Lake Hoengsung. 2001. Graduate School thesis. Sangji University
  22. Lorenzen, C.J. 1967. Determination of chlorophyll and pheo-pigments: Spectrophotometric equation. Limnol. Ocenogr. 12: 343-346
  23. Sawyer, C.N. 1947. Fertilisation of lakes by agricultural and industrial drainage. New England Water Works Association. 61: 109-27
  24. Schindler, D.W. and E.J. Fee. 1974. Experimental Lakes Area: Whole lake experiments in eutrophication. J. Fish Res. Bd. Can. 31: 973-953
  25. Stauffer, R.E. 1985. Relationships between phosphorus loading and trophic state in calcareous lakes of southeast Wisconsin. Limnol. Ocenogr. 30: 123-145
  26. U.S. EPA. 1976. Water Quality Criteria Research of the U. S. Environmental Protection Agency, Proceeding of and EPA Sponsord Symposium, EPA-600 (3-76-079): 185
  27. Vollenweider, R.A. 1968. Water Management Research; Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters, with particular reference to Nitrogen and Phosphorus as factors in Eutrophication. OECE, Paris, Technical Report DAS/CSI/68.27
  28. Vollenweider, R.A. 1976. Advance in defining critical loading levels for phosphorus in lake eutrophication. Mem. Inst. Idrobiol., 33: 53-83