• Title/Summary/Keyword: High temperature phase

Search Result 2,700, Processing Time 0.038 seconds

Operating Parameters and Performance of Biotrickling Filtration for Air Pollution Control (대기오염물질 제어를 위한 생물살수여과법의 운전인자와 성능평가)

  • Won, Yang-Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.474-484
    • /
    • 2005
  • Biological treatment is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing volatile organic compounds and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreactor, in particular biotrickling filters. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. While the level of understanding of biotrickling filtration process for VOCs still remains limited, the evident success of biotreatment of VOC in air stimulated the pursue of acitve research. This paper presents fundamental and theoretical/practical aspect of air pollution control in biotrickling filter. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control in biotrickling filter.

Mössbauer Studies of Changed Interaction on Cr Ions in Chromite (Chromite 물질의 자기상호작용에 관한 뫼스바우어 분광연구)

  • Choi, Kang-Ryong;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.47-50
    • /
    • 2007
  • [ $ZnCr_2O_4$ ] shows geometrically frustrated magnet. Recently, $CoCr_2O_4$ has been investigated for multiferroic property and dielectric anomalies by spin-current model. Polycrystalline $CoCr_2O_4$ and $CoCrFeO_4$ compounds was prepared by wet-chemical process. Crystallographic and magnetic properties of $CoCr_2O_4$ and $CoCrFeO_4$ were investigate by using the x-ray diffractometer(XRD), vibrating sample magnetometer(VSM), superconducting quantum interference device magnetometer(SQUID), and $M\"{o}ssbauer$ spectroscopy. The crystal structure was found to be single-phase cubic spinel with space group of Fd3m. The lattice constants of $CoCr_2O_4$ and $CoCrFeO_4$ $a_0$ were determined to be 8.340 and 8.377 ${\AA}$, respectively. The ferrimagnetic transition temperature for the both samples were observed at 97 K and 320 K. The $M\"{o}ssbauer$ absorption spectra at 4.2 K show that the well developed two sextets are superposed with small difference of hyperfine field($H_{hf1}=507\;and\;H_{hf2}=492\;kOe$). Isomer shift values($\delta$) of the two sextets are found to be 0.33 and 0.34 mm/s relative to the Fe metal, respectively, which are consistent with the high spin $Fe^{3+}$ charge state.

Biotreatment Technologies for Air Pollution Control (생물학적 처리기술을 이용한 대기오염 제어)

  • Won, Yang-Soo
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.1-15
    • /
    • 2007
  • Biological treatment is a relatively recent air pollution control technology in which off-gases containing biodegradable odors and volatile organic compounds(VOCs) are vented through microbes. It is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing VOCs and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The three most widely used technologies are described, namely biofiltration, biotrickling filtration, bioscrubbing. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreaction systems, for solving problems of biofilter. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. This, paper reviews fundamental and theoretical/practical aspect of air pollution control in biofilter, biotrickling filter and bioscrubber, focusing more extensively on biotrickling filtration. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control, and cost estimation in biotreatment technologies.

  • PDF

Effect of process conditions on crystal structure of Al PEO coating. I. Unipolar pulse and coating time (알루미늄 PEO 코팅의 결정상에 미치는 공정 조건에 대한 연구 I. Unipolar 펄스와 코팅시간)

  • Kim, Bae-Yeon;Ham, Jae-Ho;Lee, Deuk Yong;Kim, Yong-Nam;Jeon, Min-Seok;Kim, Kiyoon;Choi, Ji-Won;Kim, Sung Youp;Kim, Kwang Youp
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.59-64
    • /
    • 2014
  • Crystallographic phases of Plasma electrolytic oxidized Al alloy, A1050, were investigated. The electrolyte of PEO was $Na_2Si_2O_3$ and KOH. Unipolar pulse, $ 2000{\mu}sec$ with $400{\mu}sec+420V$ impulse, were applied for 2 min, 5 min, 15 min, and 30 min. ${\gamma}-Alumina$, as well as ${\alpha}-alumina$, was main crystal phase. ${\gamma}-Alumina$ was appeared in the beginning, then the amount of ${\alpha}-alumina$ was increased with time, but the amount of ${\gamma}-Alumina$ remained constant without any increasing. So, it is concluded that plasma gas produce ${\gamma}-Alumina$ at the first, and then ${\gamma}-Alumina$ transform ${\alpha}-alumina$ finally. During the transformation, high temperature of micro plasma gives transformation energy.

Effect of Mood and Personality Characteristics on Psychophysiological Responses (기분과 성격특성이 정신생리적 반응에 미치는 영향)

  • Koo, Moon-Sun;Yu, Bum-Hee
    • Sleep Medicine and Psychophysiology
    • /
    • v.8 no.1
    • /
    • pp.59-66
    • /
    • 2001
  • Objectives: This study examined the effect of mood and personality characteristics on psychophysiological responses measured by a biofeedback system in a normal population. Methods: Fifty healthy volunteers without any history of medical or psychiatric illnesses participated in this study. We measured the Spielberger trait anxiety inventory, Beck depression inventory, and Eysenck personality questionnaires in these subjects. Using the J & J biofeedback system, we also measured skin temperature, electrodermal response, forearm and frontal electromyography (EMG)s in 3 experimental conditions of baseline, stress, and recovery phases. Results: Trait anxiety did not show any significant correlation with psychophysiological responses except stress response in forearm EMG levels(r=0.282, p<0.05). Depressed mood was negatively correlated with forearm EMG levels in baseline (r=-0.299, p<0.05) and recovery phases(r=-0.314, p<0.05). Subjects with relatively high levels of depressed mood showed different stress and recovery responses in frontal EMG levels compared with those with relatively low levels of depressed mood (F=4.26, p<0.05). Extroverted subjects showed higher levels of forearm EMG than introverted ones in stress phase. Conclusion: Mood and personality characteristics in healthy subjects are closely related with psychophysiological responses measured by a biofeedback system. We suggest that mood and personality characteristics should be considered as important variables in analyzing abnormal psychophysiological responses in some psychiatric patients.

  • PDF

Refinement of the manganese nitrate solution prepared by leaching the reduced Ferromanganeses dust with nitric acid. (용해도 차이를 이용한 질산망간 용액의 정제)

  • Cho Young-Keun;Song Young-Jun;Lee Gye-Seung;Shin Kang-Ho;Kim Hyung-Seok;Kim Yun-Che;Cho Dong-Sung
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • Mn was extracted by using a nitric acid from the reduced ferromanganese dust and the basic experiments were taken to refine the manganese nitrate solution by means of precipitation of Ca, Mg oxalate. The dust was generated in AOD process producing a medium-low carbon ferromanganese and collected in the bag filter. Manganese oxide content in the dust was about 90% and its phase was confirmed as $Mn_3$$O_4$. $Mn_3$$O_4$ in the dust was reduced to MnO by roasting with activated charcoal. The main impurities in the extracted solution prepared by leaching the reduced dust with nitric acid were Na, K, Fe, Si, Ca, Mg etc. Among them, Fe was removed by controlling pH of the solution more than 4 and precipitating $Fe(OH)_3$, simultaneously silicious material solved in the solution was removed by co-precipitation with the ferric hydroxide. Addition of 150 g reduced dust into 4N HNO3 solution 1$\ell$ was appropriate to control the pH of the solution to pH 4. To differ greatly the solubilities of manganese oxalate and calcium or magnesium oxalate in a solution containing a high concentration of Mn, pH of 4 or less and addition of ($NH_4$)$_2$$C_2$$O_4$ in equivalent with Ca and Mg are recommended. At this time, the higher temperature was the shorter the precipitation reaction time was needed.

The Stabilization of 20.0% Ascorbic Acid in Aqueous Cosmetic Formulation (아스코빅애씨드 고함량 안정화 수계 조성물 제조 방법)

  • Park, Jeong Mi;Eun, So Hee;Ko, Eun Ah;Han, Sang Keun;Kang, Hak Hee;Hyun, Seung Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.125-131
    • /
    • 2018
  • Ascorbic acid (Vitamin C) has been widely used in skin care formulations. Due to its remarkable effects on anti-oxidation, collagen biosynthesis and whitening, ascorbic acid is considered as an effectible anti-aging active ingredient. But, the instability problems of ascorbic acid in cosmetic formulation such as oxidation, browning and changes in smell is the difficult issue to be overcome for the application of high concentration of ascorbic acid. We tried to stabilize the ascorbic acid in non-aqueous liquid formulation that contains polyol solvent at first. The non-aqueous system was effectible to reduce oxidation. But, ascorbic acid was crystallized in the non-aqueous formulation at the low temperature below $5^{\circ}C$. We tried to develop way to stabilize the ascorbic acid in aqueous solutions to solve the crystallizing problem. In this study, we search the optimal ratio of antioxidant combination, such as zinc sulfate, glutathione and curcuma longa (turmeric) root extract. Formulations were stored at - $16^{\circ}C$, $5^{\circ}C$, $25^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$ and cycle($5-40^{\circ}C$) (in incubator) for a period of eight weeks to investigate their stability. In the stability analysis, the test parameters consisted of color, scent, phase separation and sedimentation. Ascorbic acid stability was checked by HPLC analysis.

A Basic Study on the Production of $Sm_{2}Fe_{17}N_{x}$ System Rare Earth Permanent Magnet by the Reduction and Diffusion(I) - Production of Alloy Powder of $Sm_{2}Fe_{17}$ Intermetallic Compound - (환원.확산법에 의한 $Sm_{2}Fe_{17}N_{x}$ 계 희토류 영구자석의 제조에 관한 기초연구(제 1보) -$Sm_{2}Fe_{17}$금속간화합물 합금분말의 제조-)

  • Song, Chang-Bin;Choo, Tong-Rae
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.720-725
    • /
    • 1998
  • As a basic study on the production of $Sm_{2}Fe_{17}N_{x}$ system rare earth permanent magnet by the reduction and diffusion(R- D) process, firstly the reduction reaction of $Sm_2O_3$ by metallic Ca and diffusion of Sm into Fe powder was investigated for the production the $Sm_{2}Fe_{17}$intermetallic compound. We concluded that the former case was very rapidly completed under the high temperature greater than 100$0^{\circ}C$ and the latter case of completion of diffusion reaction of Sm into the center of Fe powder(perfect homogenization condition) was required through 3h R- D reaction at 110$0^{\circ}C$ and identified as a rate determining step(RDS) on the whole reaction. Though $SmFe_2,SmFe_3$, and $Sm_{2}Fe_{17}$phases in the growth of phases of intermetallic compound in the Sm - Fe binary system were obseved below 100$0^{\circ}C$, but only $Sm_{2}Fe_{17}$phase was observed at lIOO$^{\circ}C$. Oxygen and Ca contents of the final sample in this work were 0.72wt% and O. 11 wt% respectively.

  • PDF

Effect of Precipitation on Operation Range of the CO2 Capture Process using Ammonia Water Absorbent (암모니아수 흡수제를 이용한 이산화탄소 제거 공정에서 침전생성이 조업영역에 미치는 영향)

  • You, Jong Kyun;Park, Ho Seok;Hong, Won Hi;Park, Jongkee;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.258-263
    • /
    • 2007
  • Ammonia water was investigated as a new absorbent of the chemical absorption process for the removal of $CO_2$ in flue gas. The suitable range of ammonia water concentration and $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) were decided in the point of view of $CO_2$ absorption capacity and $NH_4HCO_3$ precipitation. The absorption capacity of $CO_2$ and the precipitation of $NH_4HCO_3$ in liquid phase were calculated by the Pitzer model for electrolyte solution. The $CO_2$ absorption capacity of the ammonia water over $5\;molNH_3/kgH_2O$ was higher than that of conventional amine absorbent. The $CO_2$ loadings where precipitation occurred were decided at various absorbent concentrations. Theses values were higher than 0.5 in the concentration range of $5-14\;molNH_3/kgH_2O$ at 293, 313 K. The absorber for the removal of $CO_2$ in flue gas could be operated without $NH_4HCO_3$ precipitation by using high concentration of ammonia water below these $CO_2$ loading values. The optimum temperature of the ammonia water absorbent for removal of $CO_2$ in flue gas was 297-312 K depending on the concentration of ammonia water.

Friction and Wear Properties of Plasma-sprayed Cr2O3-MoO3 Composite Coatings at High Temperature (MoO3가 첨가된 Cr2O3 플라즈마 용사코팅의 고온 마찰 마멸 특성)

  • Lyo, In-Woong;Ahn, Hyo-Sok;Lim, Dae-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.851-856
    • /
    • 2002
  • Tribological behavior of plasma-sprayed $Cr_2O_3$-based coatings containing $MoO_3$ at 450$^{\circ}C$ was investigated to understand the influence of $MoO_3$. A reciprocal disc-on-plate type tribo-tester was employed to examine fricition and wear behavior of the specimens. The microstructure and phase composition of the coating was characterized with Transmission Electron Microscopy(TEM). The TEM analysis indicated that $MoO_3$ was dispersed into the grain boundary, resulting in the increase of the hardness and density of the coating. Worn surfaces were investigated by scanning electron microscopy and chemistry of the worn surfaces was analyzed using a X-ray Photoelectron Spectrometer(XPS). The results showed that the friction coefficient of the $MoO_3$-added coatings was lower than that without $MoO_3$ addition. The larger protecting layers were observed at the worn surface of plasma spray coated specimens with $MoO_3$ composition in the protecting layer appears to be more favorable in reducing the friction.