• 제목/요약/키워드: High temperature low cycle fatigue

검색결과 76건 처리시간 0.028초

STRAIN RATE CHANGE FROM 0.04 TO 0.004%/S IN AN ENVIRONMENTAL FATIGUE TEST OF CF8M CAST STAINLESS STEEL

  • Jeong, Ill-Seok;Kim, Wan-Jae;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.83-88
    • /
    • 2011
  • To define the effect of strain rate variation from 0.04% to 0.004%/s on environmental fatigue of CF8M cast stainless steel, which is used as a primary piping material in nuclear power plants, low-cycle fatigue tests were conducted at operating pressure and temperature condition of a pressurized water reactor, 15 MPa and $315^{\circ}C$, respectively. A high-pressure and high-temperature autoclave and cylindrical solid fatigue specimens were used for the strain-controlled low-cycle environmental fatigue tests. It was observed that the fatigue life of CF8M stainless steel is shortened as the strain rate decreases. Due to the effect of test temperature, the fatigue data of NUREG-6909 appears a slightly shorter than that obtained by KEPRI at the same stress amplitude of $1{\times}10^3$ MPa. The environmental fatigue correction factor $F_{en}$'s calculated with inputs of the test data increases with high strain amplitude, while the $F_{en}$'s of NUREG-6909 remain constant regardless of strain amplitude.

CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성 (Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel)

  • 정일석;하각현;김태룡;전현익
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.177-185
    • /
    • 2008
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor (PWR). The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside a small autoclave. So the magnet type LVDT#s were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. Displacement of the fatigue specimen gauge length calculated by FEM (finite element method) used to modify the measured displacement and fatigue life at the shoulders. A series of low cycle fatigue life tests in air and PWR conditions simulating the cyclic strain hardening effect verified that the FEM modified fatigue life was well agreed with the simulating test results. The process and method developed in this study for the environmental fatigue test inside the small sized autoclave would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

25Cr-13Ni 스테인리스강의 고온 크리프-피로거동에 관한 연구 (High Temperature Creep-Fatigue Behavior of 25Cr-13Ni Stainless Steel)

  • 송전영;안용식
    • 열처리공학회지
    • /
    • 제28권2호
    • /
    • pp.68-74
    • /
    • 2015
  • The low cycle fatigue (LCF) and creep-fatigue (hold time tension fatigue, HTTF) tests were performed on the modified 25Cr-13Ni cast stainless steel, which was selected as a candidate material for exhaust manifold in automotive engine. The exhaust manifold is subjected to an environment in which heating and cooling cycle occur due to the running pattern of automotive engine. Several types of fatigue behaviour such as thermal fatigue, thermal mechanical fatigue and creep-fatigue are belong to the main failure mechanisms. High temperature tensile test was firstly carried out to compare the sample with the traditional cast steel for the component. The low cycle fatigue and HTTF tests were carried out under the strain controlled condition with the total strain amplitude from ${\pm}0.6%$ to ${\pm}0.7%$ at $800^{\circ}C$. The hysteresis loops of HTTF tests showed significant stress relaxation during tension hold time. With the increase of tension hold time, the fatigue life was remarkably deceased which caused from the formation of intercrystalline crack by the creep failure mechanism.

액체로켓 터보펌프 터빈의 고열 저주기 피로수명 예측 (High-temperature Low-cycle Fatigue Life prediction of a Liquid Rocket Turbopump Turbine)

  • 이무형;장병욱;정은환;전성민;이수용;박정선
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.18-21
    • /
    • 2009
  • 높은 열하중하에 있는 부품의 수명은 일반적으로 다른 부품에 비해 짧은 수명을 가지고 있다. 액체 로켓의 터보펌프 터빈은 작동시간 동안 높은 회전속도로 인한 높은 원심력과 높은 온도와 같은 환경하에서 작동된다. 이와 같은 환경은 터보펌프 터빈의 저주기 피로를 야기한다. 우선 열응력을 해석하기 위해 ABAQUS/CAE가 사용되었으며 탄성변형률과 소성변형률을 고려하기 위해 Coffin-Manson 방정식을 사용하였다. 평균응력의 변화를 고려하기 위해 S.W.T법을 사용하였으며, 열응력해석 결과로 얻어진 변형률 이력을 이용하여 터보펌프 터빈의 취약지점에 저주기피로해석을 수행하였다. 본 연구에서는 저주기 수명을 해석하기 위해 변형룰 수명 방법이 적용되었다.

  • PDF

Environmental fatigue correction factor model for domestic nuclear-grade low-alloy steel

  • Gao, Jun;Liu, Chang;Tan, Jibo;Zhang, Ziyu;Wu, Xinqiang;Han, En-Hou;Shen, Rui;Wang, Bingxi;Ke, Wei
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2600-2609
    • /
    • 2021
  • Low cycle fatigue behaviors of SA508-3 low-alloy steel were investigated in room-temperature air, high-temperature air and in light water reactor (LWR) water environments. The fatigue mean curve and design curve for the low-alloy steel are developed based on the fatigue data in room-temperature and high-temperature air. The environmental fatigue model for low-alloy steel is developed by the environmental fatigue correction factor (Fen) methodology based on the fatigue data in LWR water environments with the consideration of effects of strain rate, temperature, and dissolved oxygen concentration on the fatigue life.

STS 316鋼 의 高溫低사이클 疲勞强度 와 破壞擧動 에 미치는 크리이프 - 疲勞 相互作용 의 影響 (Effect of creep-fatigue interaction on high temperature low cycle fatigue strength and fracture behavior of STS 316 stainless steels)

  • 오세욱;이규용;김중완;문무경
    • 대한기계학회논문집
    • /
    • 제9권2호
    • /
    • pp.140-149
    • /
    • 1985
  • 본 연구는 오오스테나이트계 STS 316 스테인레스강에 대하여 온도 550.deg. C의 대 기중에서, 변형율제어에 의한 인장-압축에 크리이프 유지시간을 갖는 고온저사이클 피 로시험을 하여 변형율폭 및 크리이프 유지시간이 피로수명에 미치는 영향과 파단면을 주사형 전자현미경으로 관찰하여 크리이프-피로 상호작용이 피로파단면에 미치는 크리 이프 효과를 실험 고찰하였다.

Exhaust Manifold 용 오스테나이트계 스테인리스 강의 고온 변형특성 (HIGH TEMPERATURE DEFORMATION BEHAVIOR OF AUSTENITIC STAINLESS STEELS FOR EXHAUST MANIFOLD)

  • 이규동;하태권;정효태
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.314-317
    • /
    • 2007
  • Domestic automobile industries have been focusing their effort on development of exhaust manifolds using high temperature stainless steel. Exhaust manifolds fabricated with stainless steels can be categorized into tubular and cast ones. The former is usually manufactured by forming and welding process and the latter by vacuum casting process. In the present study, high temperature mechanical properties of 5 austenitic stainless steels, one was sand cast and the others vacuum cast, were investigated by performing a series of high temperature tensile tests and high temperature low cycle fatigue tests.

  • PDF

니켈기 초내열합금 IN738LC의 고온 저주기피로 거동 (Low-Cycle Fatigue in Ni-Base Superalloy IN738LC at Elevated Temperature)

  • 황권태;김재훈;유근봉;이한상;유영수
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1403-1409
    • /
    • 2010
  • 니켈기 초내열합금은 고온 강도를 지속적으로 증가시키며 현재 비행기 엔진, 선박 엔진 및 발전용 가스터빈 고온 부품 등을 만드는 가장 중요한 소재로 오래전부터 사용되어져 왔다. 이러한 부품의 수명을 연장하기 위해서는 사용 환경과 유사한 조건에서의 피로수명 예측이 매우 중요하다. 따라서 본 연구에서는 가스터빈 블레이드 소재인 니켈기 초내열합금 IN738LC에 대하여 실제운전환경과 유사한 조건을 설정하여 다양한 변형률 범위와 온도에서 시험을 수행하였다. 저주기 피로수명을 예측하기 위하여 변형률 에너지 밀도와 파단 사이클과의 관계를 사용하였다. 수명의 예측은 시험결과를 토대로 변형률 에너지법과 Coffin-Manson법에 의하여 예측을 하였다.

CF8M 스테인리스 강 저주기 환경피로 실험의 주기적 변형률 경화 특성 (Characteristics of the Cyclic Hardening in Low Cycle Environmental Fatigue Test of CF8M Stainless Steel)

  • 정일석;하각현;김태룡;전현익;김영신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.17-22
    • /
    • 2007
  • Low-cycle environmental fatigue tests of cast austenitic stainless steel CF8M at the condition of fatigue strain rate 0.04%/sec were conducted at the pressure and temperature, 15MPa, $315^{\circ}C$ of a operating pressurized water reactor. The used test rig was limited to install an extensometer at the gauge length of the cylindrical fatigue specimen inside the small autoclave. So the magnet type LVDT's were used to measure the fatigue displacement at the specimen shoulders inside the high temperature and high pressure water autoclave. However, the displacement and strain measured at the specimen shoulders is different from the one at the gauge length for the geometry and the cyclic strain hardening effect. FEM calculated the displacement and the strain of the gauge length from the data measured at the shoulders. Tensile test properties in elastic and plastic behavior of CF8M material were used in the FEM analysis. A series of low cycle fatigue tests simulating the cyclic strain hardening effect verified that the FEM calculation was well agreed with the simulated tests. The process and method developed in this study would be so useful to produce reliable environmental fatigue curves of CF8M stainless steel in pressurized water reactors.

  • PDF

PWR환경을 모사한 저주기 피로실험장치 국산화 (Development of Low-Cycle Fatigue Test Rig in Simulated PWR Environments)

  • 정일석;김상재;이용성;홍승열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.178-183
    • /
    • 2004
  • For developing fatigue design curve of cast stainless steels that would be used in piping material of domestic nuclear power plants, a low-cycle fatigue test rig was built. It is capable of performing tests in pressurized high temperature water environment of PWR. Cylindrical specimens of CF8M were used for the strain-controlled environmental fatigue tests. Fatigue life was measured in terms of the number of cycles with the variation of strain amplitude at 0.04%/s strain rates. The disparity between target length and measured length of specimens was corrected by using finite element method. The corrected test results showed similar fatigue life trend with another previous results.

  • PDF