• Title/Summary/Keyword: High speed model test

Search Result 544, Processing Time 0.026 seconds

Analysis of the Vibration Characteristics of a High-Speed Train using a Scale Model (축소모델을 통한 고속철도 차량의 진동특성 해석 및 검증)

  • Han, Jae Hyun;Kim, Tae Min;Kim, Jeung Tae
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • A scaled version of a roller rig is developed to demonstrate the dynamic characteristics of a railway vehicle for academic purposes. This rig is designed based on Jaschinski's similarity law. It is scaled to 1/10 of actual size and allows 9-DOF motion to examine the up and down vibration of a train set. The test rig consists of three sub-hardware components: (i) a driving roller mechanism with a three-phase AC motor and an inverter, (ii) a bogie structure with first and second suspensions, and (iii) the vehicle body. The motor of the rig is capable of 3,600rpm, allowing the test to simulate a vehicle up to a maximum speed of 400Km/hr. Because bearings and joints are properly connected to the sub-structures, various motion analyses, such as a lateral, pitching, and yawing motion, are allowed. The slip motion between the rail and the wheel set is also monitored by several sensors mounted in the rig. After the construction of the hardware, an experiment is conducted to obtain the natural frequencies of the dynamic behavior of the specimen. First, the test rig is run and data are collected from six sets of accelerometers. Then, a numerical analysis of the model based on the ADAMS program is derived. Finally, the measurement data of the first three fundamental frequencies are compared to the analytical result and the validation of the test rig is conducted. The results show that the developed roller rig provides good accuracy in simulating the dynamic behavior of the vehicle motion. Although the roller rig designed in this paper is intended for academia, it can easily be implemented as part of a dynamic experiment of a bogie and a vehicle body for a high-speed train as part of the research efforts in this area.

Experimental Characterization and Signal Integrity Verification of Interconnect Lines with Inter-layer Vias

  • Kim, Hye-Won;Kim, Dong-Chul;Eo, Yung-Seon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • Interconnect lines with inter-layer vias are experimentally characterized by using high-frequency S-parameter measurements. Test patterns are designed and fabricated using a package process. Then they are measured using Vector Network Analyzer (VNA) up to 25 GHz. Modeling a via as a circuit, its model parameters are determined. It is shown that the circuit model has excellent agreement with the measured S-parameters. The signal integrity of the lines with inter-layer vias is evaluated by using the developed circuit model. Thereby, it is shown that via may have a substantially deteriorative effect on the signal integrity of high-speed integrated circuits.

Effect of waterjet intake plane shape on course-keeping stability of a planing boat

  • Park, Kyurin;Kim, Dong Jin;Kim, Sun Young;Seo, Jeonghwa;Suh, Innduk;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.585-598
    • /
    • 2021
  • The course-keeping stability of a high speed planing boat should be considered at the design stage for its safe operations. The shape of waterjet intake plane is one of important design parameters of a waterjet propelled planing boat. That has significant influences on the stern flow patterns and pressure distributions. In this study, the effects of the waterjet intake shapes of planing boats on the course-keeping stabilities are investigated. Two kinds of designed planing boats have the same dimensions, but there are differences in waterjet intake plane shapes. Captive and free-running model tests, Computational Fluid Dynamics (CFD) analyses are carried out in order to estimate their hydrodynamic performances including course-keeping stabilities. The results show that the flat and wide waterjet intake plane of the initially designed boat makes the course-keeping stability worse. The waterjet intake shape is redesigned to improve the course-keeping stability. The improved performances are confirmed by free-running model tests and full-scale trials.

Analysis of the Effect of Deep-learning Super-resolution for Fragments Detection Performance Enhancement (파편 탐지 성능 향상을 위한 딥러닝 초해상도화 효과 분석)

  • Yuseok Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.234-245
    • /
    • 2023
  • The Arena Fragmentation Test(AFT) is designed to analyze warhead performance by measuring fragmentation data. In order to evaluate the results of the AFT, a set of AFT images are captured by high-speed cameras. To detect objects in the AFT image set, ResNet-50 based Faster R-CNN is used as a detection model. However, because of the low resolution of the AFT image set, a detection model has shown low performance. To enhance the performance of the detection model, Super-resolution(SR) methods are used to increase the AFT image set resolution. To this end, The Bicubic method and three SR models: ZSSR, EDSR, and SwinIR are used. The use of SR images results in an increase in the performance of the detection model. While the increase in the number of pixels representing a fragment flame in the AFT images improves the Recall performance of the detection model, the number of pixels representing noise also increases, leading to a slight decreases in Precision performance. Consequently, the F1 score is increased by up to 9 %, demonstrating the effectiveness of SR in enhancing the performance of the detection model.

An Establishment of Canard-Leading Edge Flap Scheduling Law Based on Experimental and Numerical Studies For the Aerodynamic Design of Canard Type Fighter Class Aircraft (카나드 형상 전투기급 항공기 공력설계를 위한 실험 및 수치해석적 카나드-앞전플랩 스케줄링 법칙 수립)

  • Chung, In-Jae;Kim, Sang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.655-660
    • /
    • 2007
  • A canard-leading edge flap deflection scheduling laws have been established to enhance the maneuverability of the canard type fighter class aircraft. These scheduling laws are the relation of canard-leading edge flap deflections and flight conditions to maximize the lift-drag ratio. For these purposes, the corrected supersonic panel method has been used to predict the lift-drag characteristics due to canard-leading edge flap deflections. In addition, the high speed wind tunnel test has been conducted with 1/20 scale model to validate the predicted scheduling laws. Good agreements have been obtained compared with the results of high speed wind tunnel test. Based on the results obtained from the experimental and numerical studies, the corrected supersonic panel method has shown to be useful to establish the canard-leading edge flap deflection scheduling law for the aerodynamic design of canard type fighter class aircraft.

Cutting Force Analysis in End Milling Process for High-Speed Machining of Difficult-to-Cut Materials (난삭재 고속가공에서의 엔드밀링 공정의 절삭력 해석)

  • 전태수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.359-364
    • /
    • 1999
  • Due to rapid growth of die and mould industries, it is urgently required to maximize the productivity and the efficiency of machining. In recent years, owing to the development of new kinds of material, die and mould materials are much harder and it is more difficult to cut. In this study, the workpiece SKD11(HRC45) is cut with TiAlN coated tungsten-carbide cutting tools. To find the general characteristics of difficult-to-cut materials, orthogonal turning test is performed. Orthogonal cutting theory can be expanded to oblique cutting model. The oblique cutting process in the small cutting edge element has been analyzed as orthogonal cutting process in the plane containing the cutting velocity vector and chip-flow vector. Hence, with the orthogonal cutting data obtained from orthogonal turning test, the cutting forces can be analyzed through oblique cutting model. The simulation results have shown a fairy good agreement with the test results.

  • PDF

Measurement and Analysis for the Upper Side Flow Boundary Layer of a High Speed Train Using Wind Tunnel Experiments with a Scaled Model (축소모형 풍동시험을 이용한 고속열차의 유동 상부경계층 측정 및 분석)

  • Oh, Hyuck Keun;Kwon, Hyeok-bin;Kwak, Minho;Kim, Seogwon;Park, Choonsoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • The flows around a high speed train are very important because they could affect the aerodynamic characteristics such as drag and acoustic noise. Especially the boundary layer of flows could represent the characteristic of flows around the high speed train. Most previous studies have focused on the boundary layer region along the train length direction for the side of the train and underbody. The measurement and analysis of the boundary layer for the roof side is also very important because it could determine the flow inlet condition for the pantograph. In this study, the roof boundary layer was measured with a 1/20 scaled model of the next generation high speed train, and the results were compared with full-scaled computational fluid dynamics results to confirm their validity. As a result, it was confirmed that the flow inlet condition for the pantograph is about 85% of the train speed. Additionally, the characteristics of the boundary layer, which increases along the train direction, was also analyzed.

Investigation of bonding properties of Al/Cu bimetallic laminates fabricated by the asymmetric roll bonding techniques

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • In this study, 2-mm Al/Cu bimetallic laminates were produced using asymmetric roll bonding (RB) process. The asymmetric RB process was carried out with thickness reduction ratios of 10%, 20% and 30% and mismatch rolling speeds 1:1, 1:1.1 and 1:1.2, separately. For various experimental conditions, finite element simulation was used to model the deformation of bimetallic Al/Cu laminates. Specific attention was focused on the bonding strength and bonding quality of the interface between Al and Cu layers in the simulation and experiment. The optimization of mismatch rolling speed ratios was obtained for the improvement of the bond strength of bimetallic laminates during the asymmetric RB process. During the finite element simulation, the plastic strain of samples was found to reach the maximum value with a high quality bond for the samples produced with mismatch rolling speed 1:1.2. Moreover, the peeling surfaces of samples around the interface of laminates after the peeling test were studied to investigate the bonding quality by scanning electron microscopy.

Design of Emergency Destruction System for Long-range Surface-to-Air Missile Flight Test (장거리 대공 유도탄 비행 시험을 위한 안전종료판단시스템 설계)

  • Eunyoung Noh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.466-473
    • /
    • 2024
  • An Emergency Destruction System is inevitable for ensuring safety both at sea and in populated areas, particularly during emergency detonations triggered by abnormal missile flight or upon mission completion. This paper introduces a novel method for developing an Emergency Destruction System capable of precisely calculating the Instantaneous Impact Point(IIP) during high-speed, maneuverable long-range surface-to-air missile flight tests. The Emergency Destruction System designed for long-range surface-to-air missile flight tests generates impact position tables that meticulously incorporate wind errors and navigation equations based on the Earth's ellipsoidal model. Factors such as the Coriolis effect and the direction of the gravitational acceleration vector are accounted for, significantly enhancing the accuracy of IIP determination amidst highly variable missile speed and attitude.

An Experimental Study on High Angle of Attack Static Stability Analysis For the Aerodynamic Design of Canard Type High Maneuver Aircraft (카나드 형상 고시동 항공기 공력설계를 우한 높은 받음각 정적 안정성 분석 실험 연구)

  • Chung, In-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.575-580
    • /
    • 2007
  • During the conceptual design phase of a canard type high maneuverable aircraft, the low speed small scale wind tunnel test was conducted to investigate the high angle-of-attack static stability of the aircraft. In this study, 1/50th scale generic canard-body-wing model was used for the small scale wind tunnel test. For the analysis of static stability including high angle-of-attack nonlinear characteristics, the vertical tail effects were studied due to canard deflections. In addition, the nose chine effects were studied at high angle-of-attack. Based on the results obtained from the experimental study, the configuration change effects for canard type aircraft on high angle-of-attack static stability have been able to analyze.