Browse > Article
http://dx.doi.org/10.5573/JSTS.2011.11.1.015

Experimental Characterization and Signal Integrity Verification of Interconnect Lines with Inter-layer Vias  

Kim, Hye-Won (Dept. Electrical and Computer Engineering, Hanyang University)
Kim, Dong-Chul (Dept. Electrical and Computer Engineering, Hanyang University)
Eo, Yung-Seon (Dept. Electrical and Computer Engineering, Hanyang University)
Publication Information
Abstract
Interconnect lines with inter-layer vias are experimentally characterized by using high-frequency S-parameter measurements. Test patterns are designed and fabricated using a package process. Then they are measured using Vector Network Analyzer (VNA) up to 25 GHz. Modeling a via as a circuit, its model parameters are determined. It is shown that the circuit model has excellent agreement with the measured S-parameters. The signal integrity of the lines with inter-layer vias is evaluated by using the developed circuit model. Thereby, it is shown that via may have a substantially deteriorative effect on the signal integrity of high-speed integrated circuits.
Keywords
Circuit model; eye-diagram; scattering parameter; via;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 C. Ryu, J. Lee, H. Lee , K. Lee, T. Oh, and J. Kim, “High frequency electrical model of through wafer via for 3-D stacked chip packaging,” in Proc. Electronics System integration Technology, 2006, pp.215-220.
2 G. Antonini, A. C. Scogna, and A. Orlandi, “Sparameters characterization of through, blind, and buried via holes,” IEEE Trans. Mobile Computing, Vol.2, pp.174-184, Apr./Jun., 2003.   DOI   ScienceOn
3 HFSS v12 Product datasheet, Ansoft, Pittsburgh, PA, 2009.
4 T. Uezono, K. Okada, and K. Masu, “Via distribution model for yield estimation,” in Int. Symp. Quality Electronic Design, 2006, pp.479-484.
5 T. Grangerg, Handbook of Digital Techniques for High-Speed Design. Reading, NJ: Prentice Hall, 2004.
6 B. Wu and L. Tsang, “Modeling multiple vias with arbitrary shape of antipads and pads in high speed interconnect circuits,” IEEE Trans. Microw. Wireless Compon. Lett., Vol.19, pp.12-14, Jan., 2009.   DOI   ScienceOn
7 H.-G. Low et al, “Via design optimization for high speed device packaging,” in Proc. Electronics Packaging Technology, 1998, pp.112-118.
8 S. G. Hsu and R. B. Wu, "Full-wave characterization of a through hole via in multi-layered packaging," IEEE Trans. Microw. Theory Tech., Vol.43, pp.1073-1081, May, 1994.   DOI   ScienceOn
9 J. Fan, J. L. Drewniak, and J. L. Knighten, “Lumped circuit model extraction for vias in multilayer substrates,” IEEE Trans. Electromagn. Compat., Vol.45, pp.272-280, May, 2003.   DOI   ScienceOn
10 S. Deng, T.H. Hubing, J. L. Drewniak, J. Fan et al, “Application of transmission line models to back panel plated through-hole via design,” in IEEE Topical Meeting Electrical Performance of Electronic Packaging, 2005, pp.99-102.
11 E. Laermans, J. De Geest, D. De Zutter, F. Olyslager, S. Sercu, and D. Morlion, "Modeling differential via holes," in Proc. IEEE Electrical Performance of Electronic Packaging, 2000, pp.127-130.   DOI
12 Q. Xiaofeng, W. Yushu, L. Shufang, Y. Chenguang, and G. Yougang, “Simulation and analysis of via effects on high speed signal transmission on PCB,” in Proc. Radio Science Conf., 2004, pp.283-286.
13 J. H. Kim, S. W. Han, and O. K. Kwon, “Analysis of via in multilayer printed circuit boards for highspeed digital systems,” in Proc. Electronic Materials and Packaging, 2001, pp.382-387.
14 “International Technology Roadmap for Semiconductors,” SIA Report, 2006.
15 P. R. Morrow, C. -M. Park, S. Ramanathan, M. J. Kobrinsky, and M. Harmes, “Three-dimensional wafer stacking via Cu-Cu bonding integrated with 65-nm strained-Si/Low-k CMOS Technology,” IEEE Electron Device Lett., Vol.27, pp.335-337, May 2006.   DOI   ScienceOn
16 K. Gutierrez and G. Coley, “PCB assembly guidelines for 0.4mm package on package (PoP), Part II,” Texas Instrument, application note, SPRAAV-2, 2008.
17 P. Leduc, L. Di Cioccio, B. Charlet, M. Rousseau, M. Assous et al, “Enabling technologies for 3D chip stacking,” in Int. Symp. VLSI technology, Systems and Applications, 2008, pp.76-78.
18 M. Rousseau, O. Rozeau, G. Le Carval et al, “Through-silicon via based 3D IC technology: Electrostatic simulations for design methodology,” in Proc. IMAPS Device Packaging, 2008.
19 R. Chatterjee, M. Fayolle, P. Leduc, S. Pozder et al, "Three dimensional chip stacking using a wafer-towafer integration," in Proc. IEEE Int. Interconnect Technology, 2007, pp.81-83.   DOI
20 K. W. Chung, S. Steidl, T. Krawczyk, R. Miller et al, “SerDes Chips for 100 Gbps Dual-Polarization DQPSK,” in Proc. Optical Fiber Communication, 2009, pp. 1-3.
21 T. Sekiguchi, S. Amakawa, N. Ishihara, and K. Masu, “An 8.9 mW 25 Gb/s Inductorless 1:4 DEMUX in 90 nm CMOS,” in Proc. Int. SoC Design, 2009, pp. 404-407.
22 K. Kanda, D. Yamazaki, T. Yamamoto, M. Horinaka et al, "40 Gb/s 4:1 MUX/ 1:4 DEMUX in 90 nm Standard CMOS," in Proc. IEEE Int. Solid-State Circuits, 2005, pp.152-590.   DOI
23 J. D. Meindl, “Beyond Moore’s law: The interconnect era,” Comput. Sci. Eng., Vol. 5, pp.20-24, Jan./Feb. 2003.   DOI   ScienceOn
24 M. Bohr, "The new era of scaling in an SoC world," in Proc. IEEE Int. Solid-State Circuits, 2009, pp.23-28.   DOI