• Title/Summary/Keyword: High shear rate

Search Result 353, Processing Time 0.028 seconds

A study on the detection of misalignment between piercing punch and die using a bolt-type piezo sensor (볼트형 피에조 센서를 활용한 피어싱 펀치의 얼라인먼트 불량 검출에 관한 연구)

  • Jeon, Yong-Jun;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.51-56
    • /
    • 2021
  • Piercing is the process of shearing a circular hole in sheet metal, whose high shear force makes it difficult to secure the durability of tools. In addition, uneven clearance between tools due to poor alignment of the piercing punch causes accelerated die wear and breakage of the tool. This study reviewed the feasibility of in-situ determining alignment failure during the piercing process by analyzing the signal deviation of a bolt-type piezo sensor installed inside the tool whose alignment level was controlled. Finite element analysis was performed to select the optimal sensor location on the piercing tool for sensitive detection of process signals. A well-aligned piercing process results in uniform deformation in the circumferential direction, and shearing is completed at a stroke similar to the sheet thickness. Afterward, a sharp decrease in shear load is observed. The misaligned piecing punch leads to a gradual decrease in the load after the maximum shear load. This gradual decrease is due to the progressive shear deformation that proceeds in the circumferential direction after the initial crack occurs at the narrow clearance site. Therefore, analyzing the stroke at which the maximum shear load occurs and the load reduction rate after that could detect the misalignment of the piercing punch in real-time.

A rheo-optical investigation of shear-induced morphological changes in biopolymeric blends

  • Puyvelde, P.Van;Antonov, Y.A.;Moldenaers, P.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.115-119
    • /
    • 2002
  • In this paper, a rheo-optical methodology based on small angle light scattering and polarimetry is applied to investigate in-situ and on a time resolved basis the flow-induced structures in aqueous biopolymeric blends. Water-dextran-gelatin is chosen as an example. It is verified to what extent the laws and scaling relations, originally developed for synthetic polymer blends, are valid for the morphology development in this aqueous biopolymeric mixture. It was observed that under low shear rate conditions, the biopolymeric emulsion can be regarded as a conventional emulsion. However, at high shear rates flow induced homogenization occurs.

Numerical study of the effects of periodic body acceleration (PGZ) and bifurcation angle in the stenosed artery bifurcation

  • Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.175-183
    • /
    • 2009
  • This article describes the numerical investigation of blood flow in the stenosed artery bifurcation with acceleration of the human body. Using the commercial software FLUENT, three-dimensional analyses were performed for six simulation cases with different body accelerations and bifurcation angles. The blood flow was considered to be pulsation flow, and the blood was considered to be a non-Newtonian fluid based on the Carreau viscosity model. In order to consider periodic body acceleration, a modified, time-dependent, gravitational-force term was used in the momentum equation. As a result, flow variables, such as flow rate and wall shear stress, increase with body acceleration and decrease with bifurcation angle. High values of body acceleration generate back flow during the diastolic period, which increases flow fluctuation and the oscillatory shear index at the stenosis.

Numerical Study of Non-Newtonian Flow Characteristics in Sudden Contraction-Expansion Channel (급축소-확대관에서 비뉴턴유체의 유동 특성에 관한 수치적 연구)

  • Kim, Hyung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.591-597
    • /
    • 2013
  • Because most existing non-Newtonian models are not suitable for application to the lattice Boltzmann method, theoretical and numerical studies in this regard remain challenging. In this study, the hydrokinetic (HK) model was modified and applied to a 3D sudden contraction-expansion channel flow, and the characteristics of the HK model flow were evaluated to generate non-trivial predictions in three-dimensional strong shear flows. The HK model is very efficient for application to the lattice Boltzmann method because it utilizes the shear rate and relaxation time. However, the simulation would be unstable in a high shear flow field because the local relaxation time sharply decreases with an increase in the shear rate in a strong shear flow field. In the HK model, it may become necessary to truncate the relaxation time and non-dimensional parameter to obtain stable numerical results.

Cyclic testing of chevron braced steel frames with IPE shear panels

  • Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1167-1184
    • /
    • 2015
  • Despite considerable life casualty and financial loss resulting from past earthquakes, many existing steel buildings are still seismically vulnerable as they have no lateral resistance or at least need some sort of retrofitting. Passive control methods with decreasing seismic demand and increasing ductility reduce rate of vulnerability of structures against earthquakes. One of the most effective and practical passive control methods is to use a shear panel system working as a ductile fuse in the structure. The shear Panel System, SPS, is located vertically between apex of two chevron braces and the flange of the floor beam. Seismic energy is highly dissipated through shear yielding of shear panel web while other elements of the structure remain almost elastic. In this paper, lateral behavior and related benefits of this system with narrow-flange link beams is experimentally investigated in chevron braced simple steel frames. For this purpose, five specimens with IPE (narrow-flange I section) shear panels were examined. All of the specimens showed high ductility and dissipated almost all input energy imposed to the structure. For example, maximum SPS shear distortion of 0.128-0.156 rad, overall ductility of 5.3-7.2, response modification factor of 7.1-11.2, and finally maximum equivalent viscous damping ratio of 35.5-40.2% in the last loading cycle corresponding to an average damping ratio of 26.7-30.6% were obtained. It was also shown that the beam, columns and braces remained elastic as expected. Considering this fact, by just changing the probably damaged shear panel pieces after earthquake, the structure can still be continuously used as another benefit of this proposed retrofitting system without the need to change the floor beam.

Numerical Assessment of Reinforcing Details in Beam-Column Joints on Blast Resistance

  • Lim, Kwang-Mo;Shin, Hyun-Oh;Kim, Dong-Joo;Yoon, Young-Soo;Lee, Joo-Ha
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.87-96
    • /
    • 2016
  • This numerical study investigated the effects of different reinforcing details in beam-column joints on the blast resistance of the joints. Due to increasing manmade and/or natural high rate accidents such as impacts and blasts, the resistance of critical civil and military infrastructure or buildings should be sufficiently obtained under those high rate catastrophic loads. The beam-column joint in buildings is one of critical parts influencing on the resistance of those buildings under extreme events such as earthquakes, impacts and blasts. Thus, the details of reinforcements in the joints should be well designed for enhancing the resistance of the joints under the events. Parameters numerically investigated in this study include diagonal, flexural, and shear reinforcing steel bars. The failure mechanism of the joints could be controlled by the level of tensile stress of reinforcing steel bars. Among various reinforcing details in the joints, diagonal reinforcement in the joints was found to be most effective for enhancing the resistance under blast loads. In addition, shear reinforcements also produced favourable effects on the blast resistance of beam-column joints.

Cutting Chip Forms on the Cutting Condition and Tempering Temperatures of Lead-free Brass (무연황동의 절삭 칩 형태에 미치는 절삭조건과 템퍼링 온도의 영향)

  • Joo, Y.S.;Lee, S.B.;Kim, S.Y.;Joo, C.S.;Jung, B.H
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.1
    • /
    • pp.14-21
    • /
    • 2012
  • The effects of cutting condition and tempering temperature for the shape of cutting chip were investigated. For this purpose, a lead-free brass containing 1wt.% of Bi extruded at $750^{\circ}C$ in straight turning was used in this study. The cutting chip preferred was mainly found to be loose form of arc chips with curling discontinuity, and these were formed by shear fracture. However, some of fragmental element chip were found to be mixed when tempering temperature was as high as $500^{\circ}C$. The form and size of chip was more affected by feed rate than by tempering temperature and cutting rate. In addition, the cutting surface was observed to be formed more rough in the case of high feed rate and low cutting rate compared to low feed rate and high cutting rate.

Characteristics of a Bioreactor Using Perfluorocarbons and a New Impeller (과불소탄소화물과 새로운 임펠러를 사용한 생물반응기의 특성)

  • 조무환;김용락정재학김정목
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.231-240
    • /
    • 1991
  • Recently, developments of large scale and high density cell culture methods have been the objects of many researches, because the demand of various pharmaceutical products produced by animal cell culture has been rapidly increasing. The cell culture equipment should have the requirements such as sufficient oxygen transfer and mixing, low shear stress and surface tension, and small foaming. In order to develop a proper bioreactor meeting these requirements simultaneously, a perfluorocarbon having high solubility of oxygen was sprayed into the medium as an oxygen carrier instead of air. Also, a new impeller was developed and combined together with the perfluorocarbon spraying system so as to design a new bioreartor for cell cultivation. The new impeller had better characteristics of mixing and oxygen transfer than the paddle and cell-lift impellers based on the same, shear rate. But, it was observed that the volumetric oxygen transfer coefficient of the new bioreactor decreased with increasing cell density during E. coli fermentation.

  • PDF

A Study on the Thermohydrodynamic Phenomena of Simple Fluid via Molecular Dynamics (분자동력학 을 이용한 단순유체 의 열 유체 역학적 현상 에 대한 연구)

  • 김종억;안성청;김용섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.178-183
    • /
    • 1984
  • The stresses in lubricants by external force lead to rise in temperature and drop in viscosty, and the performance of lubricants decrease by this phenomena. The processes of shear stress generation and relaxation are linear under light load condition but those are changed into nonlinearly over a certain limit of load and speed, and this phenomena influences to viscosty change. This study investigates dense fluid which carries property change for high shear rate by using molecular dynamics, and that result can be related to research a behavior of property change of lubricants under high speed and heavy load.

Acoustic Viscosity Characteristics of Oils with High Molecular Weight VI Improver Additives (고분자량 점도지수향상제가 첨가된 오일의 음향점도 특성)

  • Kong, H.;Ossia, C.V.;Han, H.G.
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.236-242
    • /
    • 2009
  • Oil viscosity is one of the important parameters for machinery condition monitoring. Basically, it is expressed as kinematic viscosity measured by capillary flow and dynamic or absolute viscosity measured by rotary shear viscometry. Recently, acoustic wave techniques appear in the market, measuring viscosity as the product of dynamic viscosity and density. For Newtonian fluids, knowledge of density allows conversion from one viscosity parameter to the other at a specific shear rate and temperature. In this work, oil samples with different chain lengths of viscosity index (VI) improvers and concentrations were examined by different viscometric techniques. Results showed that acoustic viscosity measurements give misleading results for oil samples with high molecular weight VI improvers and at low temperatures ${\leq}40^{\circ}C$.