Browse > Article

Numerical study of the effects of periodic body acceleration (PGZ) and bifurcation angle in the stenosed artery bifurcation  

Ro, Kyoung-Chul (Department of Mechanical Engineering, Chung-Ang University)
Ryou, Hong-Sun (Department of Mechanical Engineering, Chung-Ang University)
Publication Information
Korea-Australia Rheology Journal / v.21, no.3, 2009 , pp. 175-183 More about this Journal
Abstract
This article describes the numerical investigation of blood flow in the stenosed artery bifurcation with acceleration of the human body. Using the commercial software FLUENT, three-dimensional analyses were performed for six simulation cases with different body accelerations and bifurcation angles. The blood flow was considered to be pulsation flow, and the blood was considered to be a non-Newtonian fluid based on the Carreau viscosity model. In order to consider periodic body acceleration, a modified, time-dependent, gravitational-force term was used in the momentum equation. As a result, flow variables, such as flow rate and wall shear stress, increase with body acceleration and decrease with bifurcation angle. High values of body acceleration generate back flow during the diastolic period, which increases flow fluctuation and the oscillatory shear index at the stenosis.
Keywords
periodic body acceleration; Computational Fluid Dynamics; stenosis; artery bifurcation; wall shear stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Caro, C. G, J. M. Fitz-Gerald and R. C. Schroter, 1971 , Atheroma and arterial wall shear: observation, correlation and proposal of a heart dependent mass transfer mechanism for atherogenesis, Proc. R. Soc. Lond., B, Biol. Sci. 177, 109-159   DOI   PUBMED
2 CEN Report 12349, 2006, Guide to good practice on Whole-Body Vibration. WBV Good practice Guide v6.7g, EUROPEAN COMMITTEE FOR STANDARDIZATION
3 Hiatt, E. P., J. P. Mecchan and Galambos, 1961, Reports on human acceleration, nasnrc washington dc, publication 901
4 ISO, 1997, Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration - Part 1: General requirements, International Organization for Standardization, 2631-1
5 Sud, V. K. and G. S. Sekhon, 1985, Arterial flow under periodic body acceleration, Bull. Math. Biol. 47, 35-52   PUBMED   ScienceOn
6 Young, D. F., 1968, Effect of a time dependant stenosis on flow through a tube, J Eng Ind Trans ASME. 90, 148-154
7 Burton, R. R., S. D. Leverett and S. D. Michaelson, 1974, Man at High Sustainεd +G Accelεration: A Review, Aerosp Med. 45, 1115-1136   PUBMED
8 Berger, S. A. and L. D. Jou, 2000, Flows in Stenotic Vessels, Annu Rev Fluid Mech. 32, 347-382   DOI   ScienceOn
9 Chaturani, P., A. S. A. Isaac and Wassf, 1995, Blood flow with body acceleration forces, Int. J. Eng. Sci. 33, 1807-1820   DOI   ScienceOn
10 Sud, V. K. and G. S. Sekhon, 1986, Analysis of blood through a model of the human arterial system under periodic body acceleration, J Biomech. 19, 929-941   DOI   ScienceOn
11 Chaturani, P. and V. Palanisamy, 1991, PuIsatile flow of blood with periodic body acceleration, Int. J. Eng. Sci. 29, 113-121   DOI   ScienceOn
12 Fry, D. L., 1968, acute vascular endothelium changes associated with increased blood velocity gradients, Circ. Res. 22, 165-197   PUBMED   ScienceOn
13 Zerwic, J. J., 1988, Symptoms of acute myocardial infarction: Expectations of a community sample, Heart Lung. 27, 75-8   ScienceOn
14 Adams, J. A., M. J. Mangino, J. Bassuk, P. Kurlansky and M. A. Sackner, 2001, Regional blood flow during periodic acccleration, Crit. Care Med. 29, 1983-1988   DOI   ScienceOn
15 Nagarani, P. and G. Sarojamma, 2008, Effect of body acceleration on pulsatile flow of Casson fluid through a mild stenosed artery, Korea-Aust. Rheol. J. 20, 189-196   과학기술학회마을
16 Chakravarty, S. and P. K. Mandal, 1996, A nonlinear two-dimensional model of blood flow in an overlapping arterial stenosis subjected to body acceleration, Math Comput Model. 24, 43-58
17 He, X. and D. N. Ku, 1996, Pulsatile flow in the human left coronary artery bifurcation: average conditions, J Biomech Eng. 118, 74-82   DOI   ScienceOn
18 EI-Shahed, M., 2003, Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration, Appl Math Comput. 138, 479-488   DOI   ScienceOn
19 Fry, D. L., 1969, certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog, Circ. Res. 24, 93-108   DOI   PUBMED   ScienceOn
20 Arntzenius, A. C., J. Koops, F. A. Rodrigo, H. Elsbach and A. G. Brurnmelen, 1969, Circulatory Effect of Body Acceleration given Synchronously with the Heartbeat (BASH), Bibl Cardiol. 26, 180-187   PUBMED   ScienceOn
21 Chaturani, P. and V. Palanisamy, 1990, Casson fluid model for pulsatile flow of blood flow under periodic body acceleration, Biorheology. 27, 619-630   PUBMED   ScienceOn
22 Bradley, J. G and K. A. Davis, 2003, Orthostatic Hypotension, Am Fam Physician. 68, 2393-2398   PUBMED
23 Cho, Y.I., L. H. Back and D. W. Crawford, 1985, Experimental investigation of branch flow ratio, angel and Reynolds number effects on the pressure and flow fields in arterial branch models, J Biomech Eng. 107, 257-267   DOI   ScienceOn
24 Smedby, O., 1997, Do plaques grow upstream or downstream?: an angiographic study in the femoral artery, Arterioscler Thromb Vasc Biol. 17, 912-918   PUBMED   ScienceOn
25 Adams, J. A., J. A. Bassuk, J. Aris, H. Wu, V. Jorapur, G. A. Lamas and P. Kurlansky, 2008, Acute effects of 'delayed postconditioning' with periodic acceleration after asphyxia induced shock in pigs, Pediatr. Res. 64, 533-537   DOI   ScienceOn
26 Mandal, P. K., S. Chakravarthy, A. Mandal and N, Amin, 2007, Effect of body acceleration on unsteady pulsatile flow of non-Newtonian fluid through a stenosed artery, Appl Math Comput. 189, 766-779   DOI   ScienceOn
27 Mirsa, J. C. and B. K. Sahu, 1988, Flow through blood vessels under the action of a periodic acceleration field : A mathematical analysis, Comput Math Appl. 16, 993-1016   DOI   ScienceOn
28 Ku, D. N., D. P. Giddens, C. K. Zarins and S. Glagov, 1985, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis. 5, 293-302   DOI   PUBMED
29 Tang, D., C. Yang, S. Kobayashi, D. N. Ku, 2004, Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models, J Biomech Eng. 126, 363-370   DOI   ScienceOn
30 Tang, D., C. Yang, J. Zheng, P. K. Woodard, G. A. Sicard, J. E. Saffitz and C. Yuan, 2004, 3D MRI-Based multicomponent fsi models for atherosclerotic plaques, Ann Biomed Eng. 32, 947-960   DOI   ScienceOn
31 Hooks, L. E., R. M. Nerem and T. J. Benson, 1972, A momentum integral solution for pulsatile flow in a rigid tube with and without longitudinal vibration, Int J Eng Sci. 10, 989-1007   DOI   ScienceOn