DOI QR코드

DOI QR Code

Numerical Study of Non-Newtonian Flow Characteristics in Sudden Contraction-Expansion Channel

급축소-확대관에서 비뉴턴유체의 유동 특성에 관한 수치적 연구

  • Kim, Hyung Min (Dept. of Mechanical System Engineering, Kyonggi Univ.)
  • 김형민 (경기대학교 기계시스템공학과)
  • Received : 2012.12.03
  • Accepted : 2013.03.22
  • Published : 2013.06.01

Abstract

Because most existing non-Newtonian models are not suitable for application to the lattice Boltzmann method, theoretical and numerical studies in this regard remain challenging. In this study, the hydrokinetic (HK) model was modified and applied to a 3D sudden contraction-expansion channel flow, and the characteristics of the HK model flow were evaluated to generate non-trivial predictions in three-dimensional strong shear flows. The HK model is very efficient for application to the lattice Boltzmann method because it utilizes the shear rate and relaxation time. However, the simulation would be unstable in a high shear flow field because the local relaxation time sharply decreases with an increase in the shear rate in a strong shear flow field. In the HK model, it may become necessary to truncate the relaxation time and non-dimensional parameter to obtain stable numerical results.

대부분의 비뉴턴 유체 모델의 경우 격자볼쯔만 법을 이용한 3차원 유동해석에 효율적으로 적용하기 어려운 문제점을 가지고 있다. 이 연구에서는 이를 해결하기 위해 개발된 격자볼쯔만법 전용 비뉴턴 유체 모델인 Hydro-Kinetic 모델을 3차원 격자볼쯔만법 해석에 적용할 수 있도록 수정하고 이를 3차원 급축소 및 급확대 유동에 적용하여 얻은 결과를 통해서 강한 전단유동장에서 HK모델 유체의 거동을 분석하였다. HK모델은 변형률과 완화시간과의 관계를 나타낸 모델로 강한 전단유동장에서 국소적으로 큰 변형률이 발생하는 경우 완화시간이 급격하게 감소하여 해석이 불안정해지는 경향이 있어 격자볼쯔만법 해석안정성을 확보하기 위해서는 HK모델의 인수 ${\Gamma}$와 완화시간을 일정한 구간에서 변화하도록 제한 할 필요가 있다.

Keywords

References

  1. Wofl-Galadrow, D., 2000, "Lattice Gas Cellular Automata and Lattice Boltzmann Medels: An Introduction," Springer-Verlag, Berlin,
  2. Succi, S., 2001, "Lattice Boltzmann Equation for Fluid Dynamics and Beyond," Oxford university press.
  3. Chen, S. and Doolen, G., 1998, "Lattice Boltzmann Method for Fluid Flow," Ann. Rev. Fluid Mech., Vol. 30, pp.329-364. https://doi.org/10.1146/annurev.fluid.30.1.329
  4. Shan, X. and Chen, H.,"Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components," Phys. Rev. E., Vol. 47, pp 1815-1819.
  5. Zhang, J., 2010, "Lattice Boltzmann Method for Microfluidics: Models and Applications," Microfluidics and Nanofluidics, Vol.10, pp.1-28.
  6. Gabbanelli, S., Drazer, G. and Koplik, J., 2005, "Lattice Boltzmann Method for Non-Newtonian (Power-law) Fluid," Phys. Rev. E. Vol. 72, 046312 https://doi.org/10.1103/PhysRevE.72.046312
  7. Yakhot, V., Wanderer, J. and Chen, H., 2006, "Generalized Boltzmann Equation : Slip-No-Slip Dynamic Transition in Flows of Strongly Non-Linear Fluids," Physica A, Vol. 362, pp146-150. https://doi.org/10.1016/j.physa.2005.09.032
  8. Kim, W.T., Chen, H. and Jhon, M.S., 2006, "Viscoelastic Liquid Bearing Modeling via Lattice Boltzmann Method," J. App. Phys., Vol. 99, 08N106 https://doi.org/10.1063/1.2176325
  9. Kim, H.M, Kang J.H. and Jhon, M.S. 2011, "Hydro-Kinetic Approach in Non-Newtonian Lattice Boltzmann Flow Simulation," JKPS, Vol. 58. No. 3, pp. 444-447. https://doi.org/10.3938/jkps.58.444
  10. Zou, Q. and He, X., 1997, "On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model," Phys. Fluids, Vol.9, No. 6, pp.591-1598.
  11. Chen, H, 2003, "Second order Champman-Enskog Expansion Derivation of the Momentum Stress Form," unpublished note.