• Title/Summary/Keyword: High resolution video

Search Result 262, Processing Time 0.023 seconds

Adaptive Video Coding by Wavelet Transform (웨이브렛 변환에 의한 적응적 동영상 부호화)

  • 김정일;김병천
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • In this paper, picture set filter is proposed for preserving compression ratio and video qualify. This filter controls the compression ratio of each frame depending on the correlation to the reference frame by selectively eliminating less important high-resolution areas. Consequently, video quality can be preserved and bit rate can be controlled adaptively. In the simulation, to test the performance of the proposed coding method, comparisons with the full search block matching algorithm and the differential image coding algorithm are made. In the former case, video quality, compression ratio and encoding time is improved. In the latter case, video quality is degraded, but compression ratio and encoding time is improved. Consequently. the proposed method shows a reasonably good performance over existing ones.

  • PDF

Wavelet Transform Coding for Image Communication (영상 통신을 위한 웨이블릿 변환 부호화)

  • Kim, Yong-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • In this paper, a new method for effective video coding is studied. Picture set filter is proposed for preserving compression ratio and video quality. This filter controls the compression ratio of each frame depending on the correlation to the reference frame by selectively eliminating less important high-resolution areas. Consequently, video quality can be preserved and bit rate can be controlled adaptively. In the simulation, to test the performance of the proposed coding method, comparisons with the full search block matching algorithm and the differential image coding algorithm are made. In the former case, video quality, compression ratio and encoding time is improved. In the latter case, video quality is degraded, but compression ratio and encoding time is improved. Consequently, the proposed method shows a reasonably good performance over existing ones.

Experimental demonstration of uncompressed 4K video transmission over directly modulated distributed feedback laser-based terahertz wireless link

  • Eon-Sang Kim;Sang-Rok Moon;Minkyu Sung;Joon Ki Lee;Seung-Hyun Cho
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.193-202
    • /
    • 2023
  • We demonstrate the transmission of uncompressed 4K videos over the photonics-based terahertz (THz) wireless link using a directly modulated distributed feedback laser diode (DFB-LD). For optical heterodyne mixing and data modulation, a DFB-LD was employed and directly modulated with a 5.94-Gb/s non-return-to-zero signal, which is related to a 6G-serial digital interface standard to support ultra-high-definition video resolution. We derived the optimal frequency of the THz carrier by varying the wavelength difference between DFB-LD output and Tunable LD output in the THz signal transmitter to obtain the best transmission performances of the uncompressed 4K video signals. Furthermore, we exploited the negative laser-to-filter detuning for the adiabatic chirp management of the DFB-LD by the intentional discrepancy between the center wavelength of the optical band-pass filter and the output wavelength of the DFB-LD. With the help of the abovementioned methods, we successfully transmitted uncompressed 4K video signals over the 2.3-m wireless transmission distance without black frames induced by time synchronization error.

The research of transmission delay reduction for selectively encrypted video transmission scheme on real-time video streaming (실시간 비디오 스트리밍 서비스를 위한 선별적 비디오 암호화 방법의 전송지연 저감 연구)

  • Yoon, Yohann;Go, Kyungmin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.581-587
    • /
    • 2021
  • Real-time video streaming scheme for multimedia content delivery and remote conference services is one of technologies that are significantly sensitive to data transmission delay. Recently, because of COVID-19, real-time video streaming contents for the services are significantly increased such as personal broadcasting and remote school class. In order to support the services, there is a growing emphasis on low transmission delay and secure content delivery, respectively. Therefore, our research proposed a packet aggregation algorithm to reduce the transmission delay of selectively encrypted video transmission for real-time video streaming services. Through the application of the proposed algorithm, the selectively encrypted video framework can control the amount of MPEG-2 TS packets for low latency transmission with a consideration of packet priorities. Evaluation results on testbed show that the application of the proposed algorithm to the video framework can reduce approximately 11% of the transmission delay for high and low resolution video.

Design and Implementation of High-Resolution Image Transmission Interface for Mobile Device (모바일용 고화질 영상 전송 인터페이스의 설계 및 구현)

  • Ahn, Yong-Beom;Lee, Sang-Wook;Kim, Eung-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1511-1518
    • /
    • 2007
  • As studies on ubiquitous computing are actively conducted, desire for various services, including image transmission storage, search and remote monitoring. has been expanding into mobile environment as well as to PCs. while CCTV (closed circuit TV) and un DVR (Digital video Recording) are used in places where security service such as intrusion detection system is required, these are high-end equipment. So it is not easy for ordinary users or household and small-sized companies to use them. Besides, they are difficult to be carried and camera solution for mobile device does not support high-quality function and provides low-definition of QVGA for picture quality. Therefore, in this study, design and implementation of embedded system of high-definition image transmission for ubiquitous mobile device which is not inferior to PC or DVR are described. To this end, usage of dedicated CPU for mobile device and design and implementation of MPEG-4 H/W CODEC also are examined. The implemented system showed excellent performance in mobile environment, in terms of speed, picture quality.

Loss Information Estimation and Image Resolution Enhancement Technique using Low (하위 레벨 보간을 이용한 손실 정보 추정과 영상 해상도 향상 기법)

  • Kim, Won-Hee;Kim, Jong-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.18-26
    • /
    • 2009
  • Image resolution enhancement algorithm is a basic technique for image enlargement and restoration. The main problem is the image quality degradation such as blurring or blocking effects. In this paper, we propose loss information estimation and image resolution enhancement method using low level interpolation method. In the proposed method, loss information is computed by downsampling -interpolation process of obtained low resolution image. We estimate loss information of high resolution image using interpolation of the computed loss information. Lastly, we add up interpolated high resolution image and the estimated loss information which is applied a weight factor. Our experiments obtained the average PSNR 1.4dB which is improved results better than conventional algorithm. Also subjective image quality is more clearness and distinctness. The proposed method may be helpful for various video applications which required improvement of image.

Multi-Threaded Parallel H.264/AVC Decoder for Multi-Core Systems (멀티코어 시스템을 위한 멀티스레드 H.264/AVC 병렬 디코더)

  • Kim, Won-Jin;Cho, Keol;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.43-53
    • /
    • 2010
  • Wide deployment of high resolution video services leads to active studies on high speed video processing. Especially, prevalent employment of multi-core systems accelerates researches on high resolution video processing based on parallelization of multimedia software. In this paper, we propose a novel parallel H.264/AVC decoding scheme on a multi-core platform. Parallel H.264/AVC decoding is challenging not only because parallelization may incur significant synchronization overhead but also because software may have complicated dependencies. To overcome such issues, we propose a novel approach called Multi-Threaded Parallelization(MTP). In MTP, to reduce synchronization overhead, a separate thread is allocated to each stage in the pipeline. In addition, an efficient memory reuse technique is used to reduce the memory requirement. To verify the effectiveness of the proposed approach, we parallelized FFmpeg H.264/AVC decoder with the proposed technique using OpenMP, and carried out experiments on an Intel Quad-Core platform. The proposed design performs better than FFmpeg H.264/AVC decoder before the parallelization by 53%. We also reduced the amount of memory usage by 65% and 81% for a high-definition(HD) and a full high-definition(FHD) video, respectively compared with that of popular existing method called 2Dwave.

Implementation of Uncompressed Video Transmission System for Wireless Video Mirroring Service in Portable Multimedia Devices (휴대용 멀티미디어 기기에서의 무선 영상 미러링 서비스를 위한 비압축 영상 전송 시스템의 구현)

  • Lee, Sangjae;Jeon, Youngae;Choi, Sangsung;Cho, Kyoung-Rok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.381-391
    • /
    • 2013
  • Wireless transmission of uncompressed video guarantees higher quality with lower latency than compressed video transmission. Although current wireless technologies cannot fully cover required data rates of about a few Gb/s for full high definition resolution, some wireless technologies such as ultra-wideband (UWB) provide 1 Gb/s data rate which is adequate for uncompressed video transmission in portable devices. In this paper, we propose an uncompressed video transmission system for wireless mirroring services in portable devices. We firstly simulated the performance of uncompressed video transmission using single or multiple 1 Gb/s UWB technology. Then we implemented hardware-based uncompressed video processing block and Gb/s wireless MAC accelerator. Finally, we show the implementation result and the demonstration of uncompressed HD video transmission using multiple 1 Gb/s UWB PHYs.

Method of scalable video application in the advanced T-DMB (지상파 DMB 고도화 망에서의 스케일러블 비디오 부호화 기술)

  • Jun, Dong-San;Kwak, Sang-Min;Lim, Hyung-Soo;Choi, Hae-Chul;Kim, Jae-Gon;Lim, Jong-Soo;Hong, Jin-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Digital Multimedia Broadcasting is the next generation broadcasting service which enables various digital multimedia contents, i.e., audio and video, and data access for mobile users. However, due to the bandwidth limitation, the spatial resolution is limited to CIF(Common Interleaved Frame). The Advanced Terrestrial DMB (AT-DMB) secures additional bandwidth by adopting hierarchical modulation transmission technology and provides high data rate and quality for mobile multimedia broadcasting services with scalable video coding(SVC). This paper proposes scalable video coding technology for AT-DMB which enables high quality mobile multimedia broadcasting services that exceeds current DMB service's quality and contents capability.

Development of Peripheral Devices on the Endoscopic Surgery System (내시경 수술시스템의 주변장치 개발)

  • Lee, Young-Mook;Song, Chul-Gyu;Lee, Sang-Min;Kim, Won-Ky
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.164-166
    • /
    • 1995
  • The objectives of study are to develop a peripheral device on the endoscopic surgery system. These systems are consist of the following units. They are a color monitor of high resolution, light source, computer system and endoscopic camera with a C-mount head, irrigator, color video printer, Super VHS recorder and a system rack. The color monitor is a NTSC monitor for monitoring the image projected of the surgical section. The lightsource is necessary to irradiate the interior of a body via an optic fiber, The light projector will adapt the brightness in accordance with changing distance from the object. A miniature camera using a color CCD chip and computer system is used to capture and control an image of the surgical section[1]. The video printer is a 300 DPI resolution using thermal sublimation methods, which is developed by Samsung Electronics Co., Ltd. The specification of the endoscopic data management system is consist of storage of a captured image and pathological database of patients [2-4].

  • PDF