• Title/Summary/Keyword: High quality potable water

Search Result 14, Processing Time 0.025 seconds

농촌지역 간이상수도 수질에 대한 수리지화학적 특성: 충남 금산군 일대

  • 이진수;고경석;김용재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.369-372
    • /
    • 2004
  • This study presents the hydrogeochmical investigation to know the effect of geology and sources for water quality in small potable water supply system at rural area. The results of water quality in Geumsan area showed the 3.2% of water samples exceeded the limit of drinking water standard by bacteria. The hydrochemical investigation results indicated the high EC, Ca and HCO$_3$ in surface water and metasedimentary rocks and this is caused by the dissolution of calc-slicate minerals of metasedimentary rocks.

  • PDF

POTABLE WATER TREATMENT BY POLYACRYLAMIDE BASE FLOCCULANTS, COUPLED WITH AN INORGANIC COAGULANT

  • Bae, Young-Han;Kim, Hyung-Jun;Lee, Eun-Joo;Sung, Nak-Chang;Lee, Sung-Sik;Kim, Young-Han
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.21-29
    • /
    • 2007
  • For this study, we polymerized polyacrylamide base flocculants (PAA) and tested their properties and settling efficiency as a treatment for potable water. The most common chemicals for potable water treatment in Korea are alum or PAC. However, due to various reasons (such as rainy season or algae), inorganic flocculants cannot be solely depended on to solve all the problems caused by the poor quality of inflow water. When PAA coupled with coagulants in a potable water purification process is used, the turbidity removal efficiency increases by a factor of three on a single chemical system using PAC (Raw water: 5.21 NTU; Treated PAA+PAC: 0.34 NTU; and, Treated PAC: 1.04 NTU). It is possible to offset the toxic effect of residual monomers in treated water using PAA, because the concentrations of residual acrylamide are less than 400 mg/L in the polymer itself and less than $0.04\;{\mu}g/L$ in the treated water base at a dosage of 0.1 mg/L. Therefore, PAAs may be a workable, and dependable, potable water treatment process for the high pollutant level of resource water.

Considerations to design high-pressure membrane system to produce high quality potable water with lower organic matter concentration (유기물 농도가 낮은 고품질 정수 생산을 위한 고압막여과 공정 설계 시 고려사항)

  • Jeon, Jongmin;Kim, Seong-Su;Seo, Inseok;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.473-480
    • /
    • 2020
  • High-pressure membrane system like nanofiltration(NF) and reverse osmosis(RO) was investigated as a part of water treatment processes to produce high quality potable water with low organic matter concentration through membrane module tests and design simulation. River water and sand filtration permeate in Busan D water treatment plant were selected as feed water, and NE4040-90 and RE4040-Fen(Toray Chemical Korea) were used as NF and RO membranes, respectively. Total organic carbon(TOC) concentrations of NF and RO permeates were mostly below 0.5 mg/l and the average TOC removal rates of NF and RO membranes were 93.99% and 94.28%, respectively, which means NF used in this study is competitive with RO in terms of organic matter removal ability. Different from ions rejection tendency, the TOC removal rate increases at higher recovery rates, which is because the portion of higher molecular weight materials in the concentrated raw water with increasing recovery rate increases. Discharge of NF/RO concentrates to rivers may not be acceptable because the increased TDS concentration of the concentrates can harm the river eco-system. Thus, the idea of using NF/RO concentrate as the raw water for industrial water production was introduced. The design simulation results with feed water and membranes used in this work reveal that the raw water guideline can be satisfied if the recovery rate of NF/RO system is designed below 80%.

논산지역 간이급수시설 수질특성에 대한 연구

  • Go Gyeong-Seok;Lee Jin-Su;Kim Tong-Gwon;Kim Jae-Gon;Jo Seong-Hyeon;Seok Hui-Jun;Kim Hyeong-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.344-347
    • /
    • 2005
  • The purpose of the study for the development of the technologies of water quality monitoring and contamination protection at water resource aquifer is to secure the groundwater as potable water resources. The results of water analysis as a basis of potable water criteria showed that 30 groundwater samples among 138 samples of small water supply system (21.7%) were exceeded the water criteria. The concentrations of Cl, $NO_3$ and Na for granite area are higher than those of gneiss and metasedimentary rocks of Ogcheon belt area and they are caused by the high vulnerability of groundwater at granite region where the residential area and cultivated land are concentrated. The spatial distribution of components indicated the close relationships between water quality and geology, land use, and topography. The multivariate statistical results showed that the water samples are divided into three groups by geology.

  • PDF

A STUDY ON THE ELIMINATION OF FLUORIDE IN A HOT SPRING WATER

  • Lee, Hyeon-Ki;Kim, Hwan-Gi
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • The hot spring water of the north Jeonla province such as Wanggung, Jookrim, Seokjung, and Hwasim, has fluoride concentration of 3.9 mg/L, 12.7 mg/L, 1.9 mg/L, and 6.3 mg/L, respectively. These figures fairly exceed the Korean and WHO standard for potable water, which is 1.5 mg/L. Therefore, in this study, research on elimination of fluoride in a hot spring water of Jookrim region, which has the highest level of fluoride concentration level in the north Jeonla province, was carried out. In analysis of Jookrim hot spring water according to the water quality standard for potable water, pH was very high at 9.25 and the concentration of fluoride was 10 times higher than the standard at 18.2 mg/L. Other measurements were within the standard or not detected. After injecting 10g of activated carbon for elimination of fluoride, the fluoride concentration was measured at 13.5 mg/L, and when 70mL or more of alum 10 g/L solution was injected, the concentration was measured at 2.8 mg/L, and injecting 3g of lime was measured at 9 mg/L. Alum showed the best elimination performance among all individual injections. Injection of 25 mL of activated carbon and 100 mL of alum solution together reduced the fluoride concentration down to 1.3 mg/L, which is under the potable standard. Injection of lime 1g and 75 mL of alum 10 g/L solution together reduced fluoride concentration to 4.1 mg/L. From the modifying HRT, by using ion exchange resin column, the pH was stabilized when HRT was Imin and showed range of $6.7{\sim}7.8$. The fluoride concentration reduced gradually as the HRT increased, and satisfied the potable standard when HRT passed 6 min, and after 30 min HRT, the concentration of fluoride was 0.05 mg/L: almost eliminated.

Assessment of drinking water quality and its health impact on local community in coastal belt Karachi

  • Samo, Saleem Raza;Channa, Raja Siraj Ahmed;Mukwana, Kishan Chand
    • Advances in environmental research
    • /
    • v.6 no.3
    • /
    • pp.203-216
    • /
    • 2017
  • For survival of human beings clean water is an essential commodity whereas contamination in drinking water threatens to mankind. The main cause of water contamination is social and development activities of human being along with increasing population. The community in the study area has acute shortage of drinking water along with about 40 to 60% has no access to safe drinking water. This study indicates drinking water quality of two major sources of coastal belt of Karachi one is supplied by Karachi Water & Sewerage Board (KWSB) as tap water and the other through groundwater. The physicochemical analysis was carried out by following the standard methods for checking the quality of drinking water. The analyzed results showed that the quality of groundwater was unfit as potable water. The most critical situation was observed as high level of contamination followed by high turbidity and increased salinity levels. TDS in surface water were found 12% above and TDS in groundwater was 20% below the National Drinking Water Quality Standards (NDWQS) of Pakistan as well as the permissible WHO drinking water quality guidelines.

Quantification and Evaluation of Groundwater Quality Grade by Using Statistical Approaches (통계적 분석 방법을 이용한 국가지하수수질측정망의 오염 등급 정량화 및 평가)

  • Yoon, Hee-Sung;Bae, Gwang-Ok;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.22-32
    • /
    • 2012
  • This study suggests a method to grade groundwater quality quantitatively using statistical approaches for evaluating the quality of groundwater in wells included in the Groundwater Quality Monitoring Network (GQMN). The proposed analysis method is applied to GQMN data from 2001 to 2008 for nitrate nitrogen, chloride, trichloroethylene, potential of hydrogen (pH), and electrical conductivity. The analysis results are obtained as groundwater quality grades of the groundwater representing each of the monitoring stations. The degree of groundwater contamination is analysed for water quality parameters, district, and usage. The results show that the degree of groundwater contamination is relatively high by nitrate nitrogen, bacteria and electrical conductivity and at Seoul, Incheon, Gwangju, Gyeonggido and Jeollado. The degree of contamination by nitrate nitrogen and trichloroethylene is especially high when the groundwater is used for agricultural and industrial water, respectively. It is evaluated that potable groudnwater in GQMN is significantly vulnerable to nitrate nitrogen and bacteria contamination.

Prechlorination at Water Intake for the Quality Improvement of Raw Water (상수원수 수질개선을 위한 취수장 전염소 투입에 관한 연구)

  • Kim, Daehyun;Hwang, Suok;Jeong, Eunjae;Shin, Changsoo;Yu, Youngbeom;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.110-114
    • /
    • 2011
  • In this paper, in order to eliminate Limnoperna fortunei inhabiting the water conduction pipeline, prechlorination at the intake station was employed to improve the degradation of water quality due to the high pH of raw water taken at the downstream of Paldang Dam, algal growth, etc.. With the prechlorination concentration of 1.0mg/L at the intake station, the pH in the water well at the treatment plant decreased by 0.4, and with 1.5mg/L, by 0.6. Also, it eliminated Chlorophyll-a by about 95%, and the population of algae by about 49%. Such disinfection by-products (DBPs) as Trihalomathanes (THMs), Haloacetic Acids (HAAs), and Chloral Hydrate (CH) were under the quality standard for potable water, showing no change by the prechlorination, while raising the prechlorination rate from 1.0 up to 1.5mg/L, the DBPs in the water well increased by 1.5 to 3.1 times. As a consequence of testing Kyungan Stream, a branch stream flowing into Lake Paldang, the prechlorination (0.57mg/L, 1.14mg/L, 1.71mg/L) had no effect of eliminating the taste and odor compounds and total organic carbon (TOC) which is the DBPs precursor. As for the efficiency of Geosmin elimination by the rates of prechlorination and powder activated carbonation (PAC), it was found that the higher the concentration of PAC was (30ppm>20ppm>10ppm), the higher the efficiency was; the higher the rate of prechlorination was, the lower the efficiency by PAC was. Therefore, when taste and odor occur from raw water, suspending prechlorination at the intake or lowering the rate was proved to be more effective in eliminating the taste and odor compounds by PAC.

Measurement of an Ion Concentration in Drinking Water by lon Chromatography (Ion Chromatography에 의한 음료수중 음이온 함량에 관한 연구)

  • Kim Hyung-Suk
    • Journal of environmental and Sanitary engineering
    • /
    • v.4 no.1 s.6
    • /
    • pp.7-15
    • /
    • 1989
  • According to the increase of population and development of industrialization air and water pollution problems are still keeping going to great nuisance to human activities. Specially man should drink 2l clean water to maintain our health every day, but we afraid of drink the city tap water because of the contaminants like heavy metals, bacteria trihalomethane, etc. In the analysis of the anions in potable water, we usually adapt the Standard methods for the Examination of Water and Wastewater. But this method is tedious and time consuming, so the Ion Chromatography method is now used in research of water quality. Author worked with Ion Chromatography in measuring the anions in drinking water by attaching conductivity dector to normal High Performance Liquid Chromatograph. Low-capacity ion-exchange coulmn and dilute eluents, 0.00M phthalic aic was used in this study. The concentration of chloride ion was 1.55 ppm$\~$3 8.81ppm, nitrate ion was 5.45 ppm$\~$18.27ppm, and sulfate ion was 19.64 ppm$\~$28.86 ppm. The phosphate ion was detected only in Apt. tap water as 167.99 ppm whose amount was supposed to be used as a water pipe cleaner.

  • PDF

Using Artificial Neural Networks for Forecasting Algae Counts in a Surface Water System

  • Coppola, Emery A. Jr.;Jacinto, Adorable B.;Atherholt, Tom;Poulton, Mary;Pasquarello, Linda;Szidarvoszky, Ferenc;Lohbauer, Scott
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Algal blooms in potable water supplies are becoming an increasingly prevalent and serious water quality problem around the world. In addition to precipitating taste and odor problems, blooms damage the environment, and some classes like cyanobacteria (blue-green algae) release toxins that can threaten human health, even causing death. There is a recognized need in the water industry for models that can accurately forecast in real-time algal bloom events for planning and mitigation purposes. In this study, using data for an interconnected system of rivers and reservoirs operated by a New Jersey water utility, various ANN models, including both discrete prediction and classification models, were developed and tested for forecasting counts of three different algal classes for one-week and two-weeks ahead periods. Predictor model inputs included physical, meteorological, chemical, and biological variables, and two different temporal schemes for processing inputs relative to the prediction event were used. Despite relatively limited historical data, the discrete prediction ANN models generally performed well during validation, achieving relatively high correlation coefficients, and often predicting the formation and dissipation of high algae count periods. The ANN classification models also performed well, with average classification percentages averaging 94 percent accuracy. Despite relatively limited data events, this study demonstrates that with adequate data collection, both in terms of the number of historical events and availability of important predictor variables, ANNs can provide accurate real-time forecasts of algal population counts, as well as foster increased understanding of important cause and effect relationships, which can be used to both improve monitoring programs and forecasting efforts.