• Title/Summary/Keyword: High performance engine

Search Result 1,057, Processing Time 0.031 seconds

Condition Monitoring System: High Performance Wireless Measurement System (기계 상태 감시: 임베디드형의 고성능 무선 측정시스템)

  • Shim, M.C.;Yang, B.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.28-32
    • /
    • 2007
  • This research proposed that development of wireless condition monitoring system using WLAN network. It offers the prospect of improved performance that removed a current a coaxial cable and reduced overall cost of condition monitoring. Recently, there is an interesting concern for wireless system as an infrastructure technology construct ubiquitous computing environment in the future. High performance computing board makes minimization with integrate of a various functions which support wireless LAN network. Instead of wired coaxial cable using measurement system in industry, wireless LAN network assists industry automation and engineer's convenience. Developed system adapted wireless LAN network on shipboard with engine room and deck house, it also executes wireless measurement test on 8500TEU containership.

  • PDF

Steady-Flow Characteristics and Its Influence on Spray for Direct Injection Diesel Engine

  • Jeon, Chung-hwan;Park, Seung-hwan;Chang, Young-june
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.986-998
    • /
    • 2002
  • Flow and spray characteristics are critical factors that affect the performance and exhaust emissions of a direct injection diesel engine. It is well known that the swirl control system is one of the useful ways to improve the fuel consumption and emission reduction rate in a diesel engine. However, until now there have only been a few studies on the effect of flow on spray. Because of this, the relationship between the flow pattern in the cylinder and its influence on the behavior of the spray is in need of investigation. First, in-cylinder flow distributions for 4-valve cylinder head of DI (Direct Injection) Diesel engine were investigated under steady-state conditions for different SCV (Swirl Control Valve) opening angles using a steady flow rig and 2-D LDV (Laser Doppler Velocimetry). It was found that swirl flow was more dominant than that of tumble in the experimented engine. In addition, the in-cylinder flow was quantified in terms of swirl/tumble ratio and mean flow coefficient. As the SCV opening angle was increased, high swirl ratios more than 3.0 were obtained in the case of SCV -70° and 90°. Second, spray characteristics of the intermittent injection were investigated by a PDA (Phase Doppler Anemometer) system. A Time Dividing Method (TDM) was used to analyze the microscopic spray characteristics. It was found that the atomization characteristics such as velocity and SMD (Sauter Mean Diameter) of the spray were affected by the in-cylinder swirl ratio. As a result, it was concluded that the swirl ratio improves atomization characteristics uniformly.

Validation of diesel engine gas flow one-dimensional numerical analysis using the method of characteristics (특성곡선법을 이용한 디젤엔진 가스유동 1차원 수치해석의 타당성 평가)

  • KIM, Kyong-Hyon;KONG, Kyeong-Ju
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.3
    • /
    • pp.230-237
    • /
    • 2020
  • In order to design a diesel engine system and predict its performance, it is necessary to analyze the gas flow of the intake and exhaust system. A gas flow analysis in three-dimensional (3D) format needs a high-resolution workstation and enormous time for analysis. Therefore, the method of characteristics (MOC) was used for a gas flow analysis with a fast calculation time and a low-resolution workstation. An experiment was conducted on a single cylinder diesel engine to measure pressure in cylinder, intake pipe and exhaust pipe. The one-dimensional (1D) gas flow was analyzed under the same conditions as the experiment. The engine speed, valve timing and compression ratio were the same conditions and the intake pressure was inputted as the experimental results. Bent pipe such as an exhaust port that cannot be realized in 1D was omitted. As results of validation, the cylinder pressure showed accuracy, but the exhaust pipe pressure exhibited inaccuracy. This is considered as an error caused by the failure to implement a bent pipe such as an exhaust port. When analyzed in 3D, calculation time required 61 hours more based on a model of this study. In the future, we intend to implement a bent pipe that cannot be realized in 1D using 3D and prepare a method to supplement reliability by using 1D-3D coupling.

Pressure Recovery in a Supersonic Ejector of a High Altitude Turbofan Engine Testing Chamber (터보팬 엔진의 고고도 성능의 초음속 이젝터의 압력회복에 관한 연구)

  • Omollo, Owino George;Kong, Chang-Duk
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.53-59
    • /
    • 2010
  • This research aims in finding a more optimal ejector size for evacuating engine exhaust gasses and 20% of the cell cooling air. The remaining 80% of cell cooling air pumped into the test chamber is separately exhausted from the test chamber via a discharge port fitted with flow control valves and vacuum pump. Unlike its predecessor this configuration utilizes a smaller capture area to improve pressure recovery. The modified ejector size has a diameter of 1100mm enough to evacuate 66kg/s jet engine exhaust in addition to about 20%, 24kg/s of the cell cooling air tapped from the sterling chamber. This configurations has an area ratio of the engine exit and ejector inlet of about 1.2. Simulation results of the proposed ejector configuration, indicates improved pressure recovery.

Evaluation of actual Energy consumption & Simulation of Gas Engine VRF System and Comparison with Electric VRF System (가스 엔진 VRF시스템의 에너지 실사용량 & 시뮬레이션 평가와 전기 구동 VRF 시스템과의 성능비교에 관한 연구)

  • Choi, Sul-Geon;Jeon, Jong-Ug;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • Purpose: As the recent climate environment changes so rapidly, environmental problems such as hot weather and fine dust have occurred, and interest in environmental policies and technology development is increasing in countries around the world. Similarly in the Architecture, researches to reduce greenhouse gas emissions and to reduce energy application are actively conducted. Looking at previous studies, it is analyzed that the electric VRF is more energy efficient than the gas engine VRF. However, energy costs have changed due to recent price hikes and discounts on gas charges due to high electricity consumption in summer. Method: In this study, the actual building of Gas Engine VRF system was modeled using SketchUp program, and EnergyPlus was used to simulate actual building. Also, Electric VRF system was simulated, and compared with Gas Engine VRF system. Result: The total secondary energy requirement of Electric VRF system was 19.6% less than that of the Gas Engine VRF system, But when analyzing with primary energy requirement, EHP used 15.8% more energy. CO2 emissions were also estimated to be 16.9% more EHP. Energy costs were 14.8% more in Electric VRF systems, because their electricity charges are 0.6 to 160% more expensive than gas charges.

Analysis of TCP/IP Protocol for Implementing a High-Performance Hybrid TCP/IP Offload Engine (고성능 Hybrid TCP/IP Offload Engine 구현을 위한 TCP/IP 프로토콜 분석)

  • Jang Hankook;Oh Soo-Cheol;Chung Sang-Hwa;Kim Dong Kyue
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.6
    • /
    • pp.296-305
    • /
    • 2005
  • TCP/IP, the most popular communication protocol, is processed on a host CPU in traditional computer systems and this imposes enormous loads on the host CPU. Recently TCP/IP Offload Engine (TOE) technology, which processes TCP/IP on a network adapter instead of the host CPU, becomes an important way to solve the problem. In this paper we analysed the structure of a TCP/IP protocol stack in the Linux operating system and important factors, which cause a lot of loads on the host CPU, by measuring the time spent on processing each function in the protocol stack. Based on these analyses, we propose a Hybrid TOE architecture, in which functions imposing much loads on the host CPU are implemented using hardware and other functions are implemented using software.

STUDY OF CORRELATION BETWEEN WETTED FUEL FOOTPRINTS ON COMBUSTION CHAMBER WALLS AND UBHC IN ENGINE START PROCESSES

  • KIM H.;YOON S.;LAI M.-C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.437-444
    • /
    • 2005
  • Unburned hydrocarbon (UBHC) emissions from gasoline engines remain a primary engineering research and development concern due to stricter emission regulations. Gasoline engines produce more UBHC emissions during cold start and warm-up than during any other stage of operation, because of insufficient fuel-air mixing, particularly in view of the additional fuel enrichment used for early starting. Impingement of fuel droplets on the cylinder wall is a major source of UBHC and a concern for oil dilution. This paper describes an experimental study that was carried out to investigate the distribution and 'footprint' of fuel droplets impinging on the cylinder wall during the intake stroke under engine starting conditions. Injectors having different targeting and atomization characteristics were used in a 4-Valve engine with optical access to the intake port and combustion chamber. The spray and targeting performance were characterized using high-speed visualization and Phase Doppler Interferometry techniques. The fuel droplets impinging on the port, cylinder wall and piston top were characterized using a color imaging technique during simulated engine start-up from room temperature. Highly absorbent filter paper was placed around the circumference of the cylinder liner and on the piston top to collect fuel droplets during the intake strokes. A small amount of colored dye, which dissolves completely in gasoline, was used as the tracer. Color density on the paper, which is correlated with the amount of fuel deposited and its distribution on the cylinder wall, was measured using image analysis. The results show that by comparing the locations of the wetted footprints and their color intensities, the influence of fuel injection and engine conditions can be qualitatively and quantitatively examined. Fast FID measurements of UBHC were also performed on the engine for correlation to the mixture formation results.

A Study on the Effects of Fuel Rail Pressure and Engine Speed on Gas Fuel System (연료레일 압력과 엔진 속도가 가스연료 시스템에 미치는 영향에 관한 연구)

  • Kwak, Youn-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.579-585
    • /
    • 2018
  • This study is to figure out the fuel injection characteristics according to the injection pressure and engine speed in the fuel supply system for gas fuel. The fuel rail pressure was from 1.5 to 6.0 bar by 1.5 bar increment and engine speed was set 1,000 ~ 6,000 RPM at interval of 1000 RPM. Considering the real engine operation, the injection pulse width was set 2.5ms, 5.0ms, and 13.0ms which correspond low, mid and high load condition respectively. In conclusion, in case of 100cc fuel rail, 4.5 bar of injection pressure showed best performance and the minimum required injection quantity 53cc which guarantees engine output can be obtained in each 1000~ 6000 rpm engine speed.

Experimental Research on Lubricant Oil in Dual Fuel Medium-Speed Engines (중속용 Dual Fuel엔진의 윤활유에 관한 실험적 연구)

  • Hong, Sung-Ho;Park, Chang-Hoon;Park, Jungdo;Eddie, Chen
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.82-87
    • /
    • 2016
  • We performed an experimental research on lubricant oil in dual fuel medium-speed engines. It is important to select the appropriate lubricant oil because it could significantly affect engine lifetime and performance. We generally recommend the selection of the lubricant oil according to the fuel grades as contents in the project guide. However, it is a considerable challenge for shipyards to implement this concept because of the lack of space to install the complicated lubricating oil system for dual fuel engines. Therefore, we determine the adaptability of one-common lubricant oil for HiMSEN dual fuel engine through this experimental research. To check abnormality in gas mode operation and durability of engine components when a lubricating oil with high BN (base number) is used, overhaul inspections and lubricant oil analysis are carried out two times, and four times, respectively, during an operation of approximately 300 h. We investigated the variations in kinematic viscosity, base number, element quantity, pentane insoluble and sulfated ash in lubricant oil analysis. Moreover, we also investigated whether the deposit formation or wear occurred in various bearings, injectors, exhaust valves, intake valves, piston rings and so on through the overhaul inspections. There are no problems in the lubricant analysis and the overhaul inspections. Through the experimental research, we confirm that one-common lubricant oil should be selected according to the higher sulfur content of fuel oil in dual fuel engines.

GAN-based Automated Generation of Web Page Metadata for Search Engine Optimization (검색엔진 최적화를 위한 GAN 기반 웹사이트 메타데이터 자동 생성)

  • An, Sojung;Lee, O-jun;Lee, Jung-Hyeon;Jung, Jason J.;Yong, Hwan-Sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.79-82
    • /
    • 2019
  • This study aims to design and implement automated SEO tools that has applied the artificial intelligence techniques for search engine optimization (SEO; Search Engine Optimization). Traditional Search Engine Optimization (SEO) on-page optimization show limitations that rely only on knowledge of webpage administrators. Thereby, this paper proposes the metadata generation system. It introduces three approaches for recommending metadata; i) Downloading the metadata which is the top of webpage ii) Generating terms which is high relevance by using bi-directional Long Short Term Memory (LSTM) based on attention; iii) Learning through the Generative Adversarial Network (GAN) to enhance overall performance. It is expected to be useful as an optimizing tool that can be evaluated and improve the online marketing processes.

  • PDF