Proceedings of the Korean Institute of Information and Commucation Sciences Conference (한국정보통신학회:학술대회논문집)
- 2019.05a
- /
- Pages.79-82
- /
- 2019
GAN-based Automated Generation of Web Page Metadata for Search Engine Optimization
검색엔진 최적화를 위한 GAN 기반 웹사이트 메타데이터 자동 생성
- An, Sojung (Department of Computer Engineering, Chung-Ang University) ;
- Lee, O-jun (Department of Computer Engineering, Chung-Ang University) ;
- Lee, Jung-Hyeon (Department of Computer Engineering, Chung-Ang University) ;
- Jung, Jason J. (Department of Computer Engineering, Chung-Ang University) ;
- Yong, Hwan-Sung (Reality Lab)
- Published : 2019.05.23
Abstract
This study aims to design and implement automated SEO tools that has applied the artificial intelligence techniques for search engine optimization (SEO; Search Engine Optimization). Traditional Search Engine Optimization (SEO) on-page optimization show limitations that rely only on knowledge of webpage administrators. Thereby, this paper proposes the metadata generation system. It introduces three approaches for recommending metadata; i) Downloading the metadata which is the top of webpage ii) Generating terms which is high relevance by using bi-directional Long Short Term Memory (LSTM) based on attention; iii) Learning through the Generative Adversarial Network (GAN) to enhance overall performance. It is expected to be useful as an optimizing tool that can be evaluated and improve the online marketing processes.
본 논문에서는 검색엔진 최적화(SEO; Search Engine Optimization)에 인공지능 기법을 접목하여, 자동화된 SEO 도구 설계 및 구현을 목표로 한다. 기존의 SEO 온-페이지(On-page) 최적화 기법들은 웹페이지 관리자들의 경험적 지식에 의존하는 한계점을 보이고 있다. 이는 SEO 성능에 영향을 끼칠 뿐 아니라, 웹페이지 관리자들에게도 SEO 도입의 장벽으로 작용한다. 따라서, 위 문제를 해결하기 위하여 메타데이터의 효과적인 구성을 위해 다음과 같은 3단계의 접근법을 제안하고자 한다. i) 상위 랭킹 웹사이트들의 메타데이터를 추출한다. ii) 어텐션 메커니즘에 기반한 LSTM(Long Short Term Memory)을 이용하여 사용자 질의어와의 관련성 높은 메타데이터를 생성한다. iii) GAN(Generative Adversarial Network) 모델을 통하여 학습함으로써 전반적으로 성능을 높여주는 기법을 제안한다. 본 연구결과는 기업의 온라인 마케팅 프로세스를 평가하고 개선하기 위한 최적화 도구로서 유용하게 활용될 것으로 기대한다.