• Title/Summary/Keyword: High order method

Search Result 8,263, Processing Time 0.041 seconds

A Study on the High-Order Spectral Model Capability to Simulate a Fully Developed Nonlinear Sea States

  • Young Jun Kim;Hyung Min Baek;Young Jun Yang;Eun Soo Kim;Young-Myung Choi
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.20-30
    • /
    • 2023
  • Modeling a nonlinear ocean wave is one of the primary concerns in ocean engineering and naval architecture to perform an accurate numerical study of wave-structure interactions. The high-order spectral (HOS) method, which can simulate nonlinear waves accurately and efficiently, was investigated to see its capability for nonlinear wave generation. An open-source (distributed under the terms of GPLv3) project named "HOS-ocean" was used in the present study. A parametric study on the "HOS-ocean" was performed with three-hour simulations of long-crested ocean waves. The considered sea conditions ranged from sea state 3 to sea state 7. One hundred simulations with fixed computational parameters but different random seeds were conducted to obtain representative results. The influences of HOS computational parameters were investigated using spectral analysis and the distribution of wave crests. The probability distributions of the wave crest were compared with the Rayleigh (first-order), Forristall (second-order), and Huang (empirical formula) distributions. The results verified that the HOS method could simulate the nonlinearity of ocean waves. A set of HOS computational parameters was suggested for the long-crested irregular wave simulation in sea states 3 to 7.

Sensorless Speed Control Algorithm of IPMSM for Wide Speed Range with an Improved Full-Order Flux Observer (향상된 전차원 자속 관측기를 이용한 매입형 영구자석 동기 전동기의 넓은 영역 센서리스 속도제어 알고리즘 기법)

  • Kang, Seong Yun;Yoon, Jae Seung;Shin, Hye Ung;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.339-346
    • /
    • 2017
  • This paper proposes a sensorless control method to improve the performance of an internal permanent magnet synchronous motor (IPMSM) control by using a full-order flux observer in a wide speed range. The conventional sensorless control method uses a constant gain for high performance at low-speed region. However, this method has drawbacks such as an increased angle error and current ripple in the high-speed region due to the fixed gain value. In order to overcome this problem, the gain of the full-order flux observer is changed by considering the angle error in the whole speed range. The proposed method minimizes the angle error for each region of the speed range by applying a relevant gain value, which improves the current ripple reduction and motor noise cancellation. The validity of proposed sensorless control method is verified by a simulation and an experiment.

HIGH ORDER IMPLICIT METHOD FOR ODES STIFF SYSTEMS

  • Vasilyeva, Tatiana;Vasilev, Eugeny
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.165-180
    • /
    • 2001
  • This paper presents a new difference scheme for numerical solution of stiff system of ODE’s. The present study is mainly motivated to develop an absolutely stable numerical method with a high order of approximation. In this work a double implicit A-stable difference scheme with the sixth order of approximation is suggested. Another purpose of this study is to introduce automatic choice of the integration step size of the difference scheme which is derived from the proposed scheme and the one step scheme of the fourth order of approximation. The algorithm was tested by means of solving the Kreiss problem and a chemical kinetics problem. The behavior of the gas explosive mixture (H₂+ O₂) in a closed space with a mobile piston is considered in test problem 2. It is our conclusion that a hydrogen-operated engine will permit to decrease the emitted levels of hazardous atmospheric pollutants.

PERFORMANCE OF TWO DIFFERENT HIGH-ACCURACY UPWIND SCHEMES IN INVISCID COMPRESSIBLE FLOW FIELDS

  • Hosseini R;Rahimian M.H;Mirzaee M
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.99-106
    • /
    • 2005
  • Performance of first, second and third order accurate methods for calculation of in viscid fluxes in fluid flow governing equations are investigated here. For the purpose, an upwind method based on Roe's scheme is used to solve 2-dimensional Euler equations. To increase the accuracy of the method two different schemes are applied. The first one is a second and third order upwind-based algorithm with the MUSCL extrapolation Van Leer (1979), based on primitive variables. The other one is an upwind-based algorithm with the Chakravarthy extrapolation to the fluxes of mass, momentum and energy. The results show that the thickness of shock layer in the third order accuracy is less than its value in second order. Moreover, applying limiter eliminates the oscillations near the shock while increases the thickness of shock layer especially in MUSCL method using Van Albada limiter.

ORDER REDUCTION OF LINEAR SYSTEMS BY MODAL METHOD (모달 방법을 사용한 선형시스템의 오더. 리덕손)

  • Lee, Kun-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1984.07a
    • /
    • pp.84-85
    • /
    • 1984
  • The accurate description of many physical processes leads to high number of different equations which are very difficult to handle for simulation or control purposes. The reduction of high-order, linear, time-invariant systems to lower-order ones has been investigated by many researchers. In this paper, a model technique among these methods is used. This technique has been developed here as if it were extensions of Davison's original method (1), its modification having been made to provide, among other things, steady state agreement between the original large-scale and reduced-order model. The advantage of the modal analysis approach is that only matrix operations have to be executed. Here, it is very simple to obtain a reduced model. An example of illustration is shown using the model method.

  • PDF

COMPUTATIONAL PITFALLS OF HIGH-ORDER METHODS FOR NONLINEAR EQUATIONS

  • Sen, Syamal K.;Agarwal, Ravi P.;Khattri, Sanjay K.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.395-411
    • /
    • 2012
  • Several methods with order higher than that of Newton methods which are of order 2 have been reported in literature for solving nonlinear equations. The focus of most of these methods was to economize on/minimize the number of function evaluations per iterations. We have demonstrated here that there are several computational pit-falls, such as the violation of fixed-point theorem, that one could encounter while using these methods. Further it was also shown that the overall computational complexity could be more in these high-order methods than that in the second-order Newton method.

HIGH ORDER EMBEDDED RUNGE-KUTTA SCHEME FOR ADAPTIVE STEP-SIZE CONTROL IN THE INTERACTION PICTURE METHOD

  • Balac, Stephane
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.238-266
    • /
    • 2013
  • The Interaction Picture (IP) method is a valuable alternative to Split-step methods for solving certain types of partial differential equations such as the nonlinear Schr$\ddot{o}$dinger equation or the Gross-Pitaevskii equation. Although very similar to the Symmetric Split-step (SS) method in its inner computational structure, the IP method results from a change of unknown and therefore do not involve approximation such as the one resulting from the use of a splitting formula. In its standard form the IP method such as the SS method is used in conjunction with the classical 4th order Runge-Kutta (RK) scheme. However it appears to be relevant to look for RK scheme of higher order so as to improve the accuracy of the IP method. In this paper we investigate 5th order Embedded Runge-Kutta schemes suited to be used in conjunction with the IP method and designed to deliver a local error estimation for adaptive step size control.

Design of a Tele-centric Wide Field Lens with High Relative Illumination and Low Distortion Using Third-order Aberration Analysis

  • Kim, Kae-Hong;Kim, Yeong-Sik;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.679-686
    • /
    • 2015
  • This paper presents a design method for improving the low relative illumination and large distortion due to widening the field of a system. A tele-centric optical system in image space was suggested to increase the relative illumination. Through the analyses of the third-order aberrations affected by introducing aspherical surfaces, we have proposed a method to determine analytically what surface should be aspheric to correct each aberration effectively. By utilizing this method to design a wide field lens, a tele-centric wide field lens with f-number of F/2.0 was obtained. Even though the field angle is 120 degrees, it has a very low distortion less than -2% and high relative illumination more than 73.7%. In conclusion, this analytic method for selecting aspherical surfaces is expected to serve as a useful way to find design solutions.

High Quality Image Interpolation for Color Filter Arrays (Color Filter Array에 대한 고품질 영상보간기법)

  • 이봉준;이철희
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.171-173
    • /
    • 2000
  • In this paper, we present a new interpolation method for the color filter away(CFA). In order to capture color images. typical input devices use a single chip CCD imaging sensor with color filter array. As a result, the single chip CCD does not provide sufficient color resolutions since it arranges different color filters sequentially on a single CCD, resulting in aliasing noise and loss of resolution. In order to reconstruct high quality color images, we propose to use the interpolation algorithm using high order B-splines. Experiments show promising results.

  • PDF

GLOBAL EXPONENTIAL STABILITY OF ALMOST PERIODIC SOLUTIONS OF HIGH-ORDER HOPFIELD NEURAL NETWORKS WITH DISTRIBUTED DELAYS OF NEUTRAL TYPE

  • Zhao, Lili;Li, Yongkun
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.577-594
    • /
    • 2013
  • In this paper, we study the global stability and the existence of almost periodic solution of high-order Hopfield neural networks with distributed delays of neutral type. Some sufficient conditions are obtained for the existence, uniqueness and global exponential stability of almost periodic solution by employing fixed point theorem and differential inequality techniques. An example is given to show the effectiveness of the proposed method and results.