• Title/Summary/Keyword: High oleate peanut

Search Result 3, Processing Time 0.023 seconds

Effect of Monounsaturated Fatty Acid-enriched Peanut Consumption on Serum Lipid in High Fat Diet-induced Mice (고지방 식이 유도 비만 마우스에서 고올레산 땅콩 섭취의 혈장 지질 개선 효과)

  • Oh, Eunyoung;Pae, Suk-Bok;Kim, Sungup;Kim, Jung-In;Lee, Myoung Hee;Sung, Jung Sook;Ha, Tae Joung
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.6
    • /
    • pp.747-754
    • /
    • 2020
  • This study was conducted to evaluate the effect of high-oleate and normal-oleate peanut consumption on adipose mass and serum lipids in obese-induced C57BL/6J mice. After four weeks of the high-fat diet, mice were randomly divided into six groups: normal control (NC) diet, high-fat control (HFC) diet, high-oleate peanut-seed (HOPS) diet, normal-oleate peanut-seed (NOPS) diet, high-oleate peanut-oil (HOPO) diet, and olive-oil (OO) diet. After four weeks, all four experimental diet groups showed significantly lower body weight and epididymal fat weight than HFC group. In four experimental diet groups, serum triglycerides (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly lower, and high-density lipoprotein cholesterol (HDL-C) was significantly higher than HFC group. TG was significantly decreased in HOPS group (92.1±1.2 mg/dL) than NOPS group (101.7±5.3 mg/dL, p<0.05). Similarly, LDL-C was significantly lower in HOPS group (66.1±2.8 mg/dL) than NOPS (76.9±1.5 mg/dL, p<0.05), on the other hand, HDL-C indicated a significant elevation in HOPS (50.5±2.1 mg/dL) than NOPS group (45.2±1.6 mg/dL, p<0.05). This result suggests that the consumption of high-oleate peanut has a favorable effect on the plasma lipid profile.

Development of Selectable Marker of High Oleate Trait in Peanut (Arachis hypogaea L.) (땅콩에서 고 올레인산 형질관련 분자마커의 선발)

  • Yang, Kiwoung;Pae, Suk-Bok;Park, Chang-Hwan;Lee, Myoung Hee;Jung, Chan-Sik;Son, Jeong-Hee;Park, Keum-Yong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.507-514
    • /
    • 2010
  • Peanut(Arachis hypogaea L.) is one of the major oilseed crops. The peanut oil consists of palmitic, oleic and linoleic acids, which are present at levels of 10%, 36-67% and 15-43%, respectively. High oleate mutant of peanut F435 contains 80% oleate and as little as 2% linoleate in seed oil. Previous study indicated that delta 12 fatty acid desaturase is a major enzyme controlling the oleate content in seeds of oilseed crops. F435 sequence alignment of their coding regions disclosed that an extra A(adenine) was inserted at the position +2,823 bp of delta 12 fatty acid desaturase gene. This study was to develop molecular marker (SNP marker) co-segregating with the high oleate trait. Chopyeong ${\times}$ F435 $F_2$ 41 population were investigated using molecular marker and fatty acid assay (NIR and gas chromatography). Finally, this marker segregates Chopyeong type 26 lines, heterotype 9 lines and F435 type 6 lines. These results in our study suggested that SNP marker conform fatty acid assay.

Determination of Fatty Acid Composition in Peanut Seed by Near Infrared Reflectance Spectroscopy

  • Lee, Jeong Min;Pae, Suk-Bok;Choung, Myoung-Gun;Lee, Myoung-Hee;Kim, Sung-Up;Oh, Eun-young;Oh, Ki-Won;Jung, Chan-Sik;Oh, In Seok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.64-69
    • /
    • 2016
  • This study was conducted to develop a fast and efficient screening method to determine the quantity of fatty acid in peanut oil for high oleate breeding program. A total of 329 peanut samples were used in this study, 227 of which were considered in the calibration equation development and 102 were utilized for validation, using near infrared reflectance spectroscopy (NIRS). The NIRS equations for all the seven fatty acids had low standard error of calibration (SEC) values, while high R2 values of 0.983 and 0.991 were obtained for oleic and linoleic acids, respectively in the calibration equation. Furthermore, the predicted means of the two main fatty acids in the calibration equation were very similar to the means based on gas chromatography (GC) analysis, ranging from 36.7 to 77.1% for oleic acid and 7.1 to 42.7% for linoleic acid. Based on the standard error of prediction (SEP), bias values, and $R^2$ statistics, the NIRS fatty acid equations were accurately predicted the concentrations of oleic and linoleic acids of the validation sample set. These results suggest that NIRS equations of oleic and linoleic acid can be used as a rapid mass screening method for fatty acid content analysis in peanut breeding program.