• Title/Summary/Keyword: High mobility electron transistor

Search Result 165, Processing Time 0.025 seconds

Implementation and Problem Analysis of Phase Shifted dc-dc Full Bridge Converter with GaN HEMT (Cascode GaN HEMT를 적용한 위상 천이 dc-dc 컨버터의 구현 및 문제점 분석)

  • Joo, Dong-Myoung;Kim, Dong-Sik;Lee, Byoung-Kuk;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.558-565
    • /
    • 2015
  • Gallium nitride high-electron mobility transistor (GaN HEMT) is the strongest candidate for replacing Si MOSFET. Comparing the figure of merit (FOM) of GaN with the state-of-the-art super junction Si MOSFET, the FOM is much better because of the wide band gap characteristics and the heterojunction structure. Although GaN HEMT has many benefits for the power conversion system, the performance of the power conversion system with the GaN HEMT is sensitive because of its low threshold voltage ($V_{th}$) and even lower parasitic capacitance. This study examines the characteristics of a phase-shifted full-bridge dc-dc converter with cascode GaN HEMT. The problem of unoptimized dead time is analyzed on the basis of the output capacitance of GaN HEMT. In addition, the printed circuit board (PCB) layout consideration is analyzed to reduce the negative effects of parasitic inductance. A comparison of the experimental results is provided to validate the dead time and PCB layout analysis for a phase-shifted full-bridge dc-dc converter with cascode GaN HEMT.

Comparative Performance Evaluation of Si MOSFET and GaN FET Power System (Si MOSFET과 GaN FET Power System 성능 비교 평가)

  • Ahn, Jung-Hoon;Lee, Byoung-Kuk;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.283-289
    • /
    • 2014
  • This paper carries out a series of analysis of power system using Gallium Nitride (GaN) FET which has wide band gap (WBG) characteristics comparing to conventional Si MOSFET-used power system. At first, for comparison of each semiconductor device, the switching-transient parameter is quantitatively extracted from released information of GaN FET. And GaN FET model which reflect this dynamic property is configured. By using this model, the performance of GaN FET is analyzed comparing to Si MOSFET. Also, in order to enable a representative assessment on the power system level, Si MOSFET and GaN FET are applied to the most common structure of power system, full-bridge, and each power systems are compared based on various criteria, such as performance, efficiency and power density. The entire process is verified with the aid of mathematical analysis and simulation.

A 20 W GaN-based Power Amplifier MMIC for X-band Radar Applications

  • Lee, Bok-Hyung;Park, Byung-Jun;Choi, Sun-Youl;Lim, Byeong-Ok;Go, Joo-Seoc;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.181-187
    • /
    • 2019
  • In this paper, we demonstrated a power amplifier monolithic microwave integrated circuit (MMIC) for X-band radar applications. It utilizes commercial $0.25{\mu}m$ GaN-based high electron mobility transistor (HEMT) technology and delivers more than 20 W of output power. The developed GaN-based power amplifier MMIC has small signal gain of over 22 dB and saturated output power of over 43.3 dBm (21.38 W) in a pulse operation mode with pulse width of $200{\mu}s$ and duty cycle of 4% over the entire band of 9 to 10 GHz. The chip dimensions are $3.5mm{\times}2.3mm$, generating the output power density of $2.71W/mm^2$. Its power added efficiency (PAE) is 42.6-50.7% in the frequency bandwidth from 9 to 10 GHz. The developed GaN-based power amplifier MMIC is expected to be applied in a variety of X-band radar applications.

Four-channel GaAs multifunction chips with bottom RF interface for Ka-band SATCOM antennas

  • Jin-Cheol Jeong;Junhan Lim;Dong-Pil Chang
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.323-332
    • /
    • 2024
  • Receiver and transmitter monolithic microwave integrated circuit (MMIC) multifunction chips (MFCs) for active phased-array antennas for Ka-band satellite communication (SATCOM) terminals have been designed and fabricated using a 0.15-㎛ GaAs pseudomorphic high-electron mobility transistor (pHEMT) process. The MFCs consist of four-channel radio frequency (RF) paths and a 4:1 combiner. Each channel provides several functions such as signal amplification, 6-bit phase shifting, and 5-bit attenuation with a 44-bit serial-to-parallel converter (SPC). RF pads are implemented on the bottom side of the chip to remove the parasitic inductance induced by wire bonding. The area of the fabricated chips is 5.2 mm × 4.2 mm. The receiver chip exhibits a gain of 18 dB and a noise figure of 2.0 dB over a frequency range from 17 GHz to 21 GHz with a low direct current (DC) power of 0.36 W. The transmitter chip provides a gain of 20 dB and a 1-dB gain compression point (P1dB) of 18.4 dBm over a frequency range from 28 GHz to 31 GHz with a low DC power of 0.85 W. The P1dB can be increased to 20.6 dBm at a higher bias of +4.5 V.

Two-dimensional Simulation Study on Optimization of Gate Field Plate Structure for High Breakdown Voltage AlGaN/GaN-on-Si High Electron Mobility Transistors (고내압 전력 스위칭용 AlGaN/GaN-on-Si HEMT의 게이트 전계판 구조 최적화에 대한 이차원 시뮬레이션 연구)

  • Lee, Ho-Jung;Cho, Chun-Hyung;Cha, Ho-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.8-14
    • /
    • 2011
  • The optimal geometry of the gate field plate in AlGaN/GaN-on-Si HEMT has been proposed using two-dimensional device simulation to achieve a high breakdown voltage for a given gate-to-drain distance. It was found that the breakdown voltage was drastically enhanced due to the reduced electric field at the gate corner when a gate field plate was employed. The electric field distribution at the gate corner and the field plate edge was investigated as functions of field plate length and insulator thickness. According to the simulation results, the electric field at the gate corner can be successfully reduced even with the field plate length of 1 ${\mu}m$. On the other hand, when the field plate length is too long, the distance between field plate and drain electrode is reduced below a critical level, which eventually lowers the breakdown voltage. The highest breakdown voltage was achieved with the field plate length of 1 ${\mu}m$. According to the simulation results varying the $SiN_x$ film thickness for the fixed field plate length of 1 ${\mu}m$, the optimum thickness range of the $SiN_x$ film was 200 - 300 nm where the electric field strength at the field plate edge counterbalances that of the gate corner.

InGaZnO active layer 두께에 따른 thin-film transistor 전기적인 영향

  • U, Chang-Ho;Kim, Yeong-Lee;An, Cheol-Hyeon;Kim, Dong-Chan;Gong, Bo-Hyeon;Bae, Yeong-Suk;Seo, Dong-Gyu;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.5-5
    • /
    • 2009
  • Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.

  • PDF

Study of Composite channel Structure of Metamorphic HEMT for the Improved Device Characteristics (기존의 MHEMT와 InP 합성 채널 MHEMT의 소자의 항복 특성 분석 및 비교 연구)

  • Choi, Seok-Gyu;Baek, Yong-Hyun;Han, Min;Bang, Seok-Ho;Yoon, Jin-Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, we have performed the channel modification of the conventional MHEMT (metamorphic high electron mobility transistor) to improve the breakdown characteristics. The Modified channel consists of the InxGal-xAs channel and the InP sub channel instead of the InxGa1-xAs channel. Since InP has the lower impact ionization coefficient in comparison with In0.53Ga0.47As, we have adopted the InP-composite channel in the modified MHEMT. We have investigated the breakdown mechanism and the RF characteristics for the conventional and the InP- composite channel MHEMTs. From the measurement results, we have obtained the enhanced on and off-state breakdown voltages of 2.4 and 5.7 V, respectively. Also, the increased RF characteristics have brought about the decreased output conductance for the InP-composite channel MHEMT. The cut-off frequency (fT) and the maximum oscillation frequency (fmax) for the InP-composite Channel MHEMT were 160 GHz and 230 GHz, respectively. It has been shown that the InP-composite channel MHEMT has the potential applications for the millimeter wave power device.

High-Efficiency GaN-HEMT Doherty Power Amplifier with Compact Harmonic Control Networks (간단한 구조의 고조파 정합 네트워크를 갖는 GaN-HEMT 고효율 Doherty 전력증폭기)

  • Kim, Yoonjae;Kim, Minseok;Kang, Hyunuk;Cho, Sooho;Bae, Jongseok;Lee, Hwiseob;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.783-789
    • /
    • 2015
  • This paper presents a Doherty power amplifier(DPA) operating in the 2.6 GHz band for long term evolution(LTE) systems. In order to achieve high efficiency, second and third harmonic impedances are controlled using a compact output matching network. The DPA was implemented using a gallium nitride high electron mobility transistor(GaN-HEMT) that has many advantages, such as high power density and high efficiency. The implemented DPA was measured using an LTE downlink signal with a 10 MHz bandwidth and 6.5 dB PAPR. The implemented DPA exhibited a gain of 13.1 dB, a power-added efficiency(PAE) of 57.6 %, and an ACLR of -25.7 dBc at an average output power of 33.4 dBm.

The Impact of traps on the DC Characteristics of AlGaN/GaN HEMT (AlGaN/GaN HEMT의 트랩에 의한 DC 출력 특성 전산모사)

  • Jung, Kang-Min;Kim, Su-Jin;Kim, Jae-Moo;Kim, Dong-Ho;Lee, Young-Soo;Choi, Hong-Goo;Hahn, Cheol-Koo;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.76-76
    • /
    • 2008
  • 갈륨-질화물(GaN) 기반의 고속전자이동도 트랜지스터(high electron mobility transistor, HEMT)는 최근 마이크로파 또는 밀리미터파 등의 고주파 대역의 통신시스템에 널리 사용되는 전자소자이자, 차세대 고주파용 전력 소자로 각광받고 있다. AlGaN/GaN HEMT에서 AlGaN층과 GaN층의 이종접합 구조(heterostructure)는 두 물질 간의 큰 전도대의 불연속성으로 인해 발생하는 이차원 전자가스(two-dimensional electron gas, 2DEG) 채널을 이용하여 높은 전자이동도, 높은 항복전압 및 우수한 고출력 특성을 얻는 것이 가능하다. 그러나 이린 이론적인 우수한 특성에도 불구하고 실제 AlGaN/GaN HEMT 소자에서는 AlGaN 표면과 AlGaN과 GaN 층 사이 접합면, AlGaN과 GaN 벌크층에 존재하는 트랩의 영향으로 이론보다 낮은 DC 출력 특성을 갖는다. 본 논문에서는 표면, 접합면, 벌크 층에 존재하는 트랩들을 각각의 존재 유무에 따라 시뮬레이션 함으로써 각각의 트랩이 DC 특성에 미치는 영향에 대해서 알아본다. 또한 소스와 게이트, 드레인과 게이트간의 거리에 따라 표면 트랩에 따른 영향과 AlGaN층과 GaN 층의 두께를 변화시켜가면서 각 층의 두께에 따라 벌크 트랩이 DC 특성에 미치는 영향을 알아보았다. 본 논문에서 트랩에 따른 특성의 파악을 위해서 $ATLAS^{TM}$를 이용하여 전산모사 하였다.

  • PDF

Trapezoidal Gate 구조를 이용한 AlGaN/GaN HEMT의 DC 및 고내압 특성 연구

  • Kim, Jae-Mu;Kim, Dong-Ho;Kim, Su-Jin;Jeong, Gang-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.151-151
    • /
    • 2008
  • 갈륨-질화물(GaN) 기반의 고속전자이동도 트랜지스터(high electron mobility transistor, HEMT)는 마이크로파 또는 밀리미터파 등과 같은 고주파 대역의 통신시스템에 널리 사용되는 전자소자로 각광받고 있다. GaN HEMT는 AlGaN/GaN 또는 AlGaN/InGaN/GaN 등과 같은 이종접합구조(heterostructure)로부터 발생하는 이차원 전자가스(two-dimensional electron gas, 2DEG) 채널을 이용하여 캐리어 구속효과(carrier confinement) 및 이동도의 향상이 가능하다. 또한 높은 2DEG 채널의 면밀도(sheet concentration) 와 전자의 포화 속도(saturation velocity)를 바탕으로 고출력 동작이 가능하여 차세대 이동통신용 전력 증폭기로 주목받고 있다. 그러나 이론적으로 우수한 특성과 달리, 실제 소자에서는 epi 성장시의 결함이나 전위, 표면 상태에 따른 2DEG 감소 등의 영향으로 이론보다 높은 누설 전류와 낮은 항복 전압 특성을 가진다. 특히, 기존의 GaN HEMT 구조에서는 Drain-Side Gate Edge에서의 전계 집중이 항복 전압 특성에 미치는 영향이 크다. 본 논문에서는 이러한 문제를 해결하기 위해 Trapezoidal Gate구조를 이용하여 Drain 방향의 Gate Edge가 완만히 변하는 구조를 제안하였다. 이를 위해 $ATLAS^{TM}$ 전산모사 프로그램을 이용하여 Trapezoidal Gate 구조를 구현하여 형태에 따른 전류-전압 특성 및 소자의 스위칭 특성 및 Gate 아래 채널층에 형성되는 Electric Field의 분산을 조사하고, 이를 바탕으로 고속 동작 및 높은 항복 전압을 갖는 AlGaN/GaN HEMT의 최적화된 구조를 제안하였다. 새로운 구조의 Gate를 적용한 AlGaN/GaN HEMT는 Gate edge에서의 전계를 분산시켜 피크 값이 감소되는 것을 확인하였다.

  • PDF